• search hit 12 of 20
Back to Result List

Extreme Coastal Water Levels Exacerbate Fluvial Flood Hazards in Northwestern Europe

  • Compound flooding, such as the co-occurrence of fluvial floods and extreme coastal water levels (CWL), may lead to significant impacts in densely-populated Low Elevation Coastal Zones. They may overstrain disaster management owing to the co-occurrence of inundation from rivers and the sea. Recent studies are limited by analyzing joint dependence between river discharge and either CWL or storm surges, and little is known about return levels of compound flooding, accounting for the covariance between drivers. Here, we assess the compound flood severity and identify hotspots for northwestern Europe during 1970–2014, using a newly developed Compound Hazard Ratio (CHR) that compares the severity of compound flooding associated with extreme CWL with the unconditional T-year fluvial peak discharge. We show that extreme CWL and stronger storms greatly amplify fluvial flood hazards. Our results, based on frequency analyses of observational records during 2013/2014’s winter storm Xaver, reveal that the river discharge of the 50-year compoundCompound flooding, such as the co-occurrence of fluvial floods and extreme coastal water levels (CWL), may lead to significant impacts in densely-populated Low Elevation Coastal Zones. They may overstrain disaster management owing to the co-occurrence of inundation from rivers and the sea. Recent studies are limited by analyzing joint dependence between river discharge and either CWL or storm surges, and little is known about return levels of compound flooding, accounting for the covariance between drivers. Here, we assess the compound flood severity and identify hotspots for northwestern Europe during 1970–2014, using a newly developed Compound Hazard Ratio (CHR) that compares the severity of compound flooding associated with extreme CWL with the unconditional T-year fluvial peak discharge. We show that extreme CWL and stronger storms greatly amplify fluvial flood hazards. Our results, based on frequency analyses of observational records during 2013/2014’s winter storm Xaver, reveal that the river discharge of the 50-year compound flood is up to 70% larger, conditioned on the occurrence of extreme CWL, than that of the at-site peak discharge. For this event, nearly half of the stream gauges show increased flood hazards, demonstrating the importance of including the compounding effect of extreme CWL in river flood risk management.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Poulomi GanguliORCiD, Bruno MerzORCiDGND
DOI:https://doi.org/10.1038/s41598-019-49822-6
ISSN:2045-2322
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/31511605
Title of parent work (English):Scientific reports
Publisher:Nature Publ. Group
Place of publishing:London
Publication type:Article
Language:English
Date of first publication:2019/09/11
Publication year:2019
Release date:2020/11/09
Volume:9
Number of pages:14
Funding institution:Alexander von Humboldt Foundation, GermanyAlexander von Humboldt Foundation; GFZ German Research Centre for Geosciences, Potsdam, Germany
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access
Open Access / Gold Open-Access
DOAJ gelistet
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.