• search hit 86 of 45350
Back to Result List

Hindered trench migration due to slab steepening controls the formation of the Central Andes

  • The formation of the Central Andes dates back to similar to 50 Ma, but its most pronounced episode, including the growth of the Altiplano-Puna Plateau and pulsatile tectonic shortening phases, occurred within the last 25 Ma. The reason for this evolution remains unexplained. Using geodynamic numerical modeling we infer that the primary cause of the pulses of tectonic shortening and growth of the Central Andes is the changing geometry of the subducted Nazca plate, and particularly the steepening of the mid-mantle slab segment which results in a slowing down of the trench retreat and subsequent increase in shortening of the advancing South America plate. This steepening first happens after the end of the flat slab episode at similar to 25 Ma, and later during the buckling and stagnation of the slab in the mantle transition zone. Processes that mechanically weaken the lithosphere of the South America plate, as suggested in previous studies, enhance the intensity of the shortening events. These processes include delamination of theThe formation of the Central Andes dates back to similar to 50 Ma, but its most pronounced episode, including the growth of the Altiplano-Puna Plateau and pulsatile tectonic shortening phases, occurred within the last 25 Ma. The reason for this evolution remains unexplained. Using geodynamic numerical modeling we infer that the primary cause of the pulses of tectonic shortening and growth of the Central Andes is the changing geometry of the subducted Nazca plate, and particularly the steepening of the mid-mantle slab segment which results in a slowing down of the trench retreat and subsequent increase in shortening of the advancing South America plate. This steepening first happens after the end of the flat slab episode at similar to 25 Ma, and later during the buckling and stagnation of the slab in the mantle transition zone. Processes that mechanically weaken the lithosphere of the South America plate, as suggested in previous studies, enhance the intensity of the shortening events. These processes include delamination of the mantle lithosphere and weakening of foreland sediments. Our new modeling results are consistent with the timing and amplitude of the deformation from geological data in the Central Andes at the Altiplano latitude. Plain Language Summary The Central Andes is a subduction-type orogeny that formed as a result of the interaction between the Nazca oceanic plate and the South American continental plate over the last 50 million years. Growth of the Andes is primarily the result of crustal shortening. Nevertheless, "geological" data compiled from previous studies have shown that phases of drastic pulsatile shortening occur at 15 and 5 Ma. In this study, we used high-resolution 2D numerical geodynamic simulations to investigate the link between oceanic and continental plate dynamics and their interaction. We find that when the oceanic plate steepens in the mantle transition zone, the trench retreat is hindered. Coupled with the weakening of the continental plate through the slab flattening and subsequent delamination of the lithospheric mantle, this leads to pulsatile shortening phases of a magnitude equivalent to that suggested by the data.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Michaël PonsORCiDGND, Stephan SobolevORCiDGND, Sibiao Liu, Derek Neuharth
DOI:https://doi.org/10.1029/2022JB025229
ISSN:2169-9313
ISSN:2169-9356
Title of parent work (English):JGR : Solid earth
Publisher:Wiley
Place of publishing:Hoboken, NJ
Publication type:Article
Language:English
Date of first publication:2022/11/23
Publication year:2022
Release date:2024/09/13
Tag:Central Andes; flat-slab; geodynamics; shortening; steepening; subduction dynamics
Volume:127
Issue:12
Article number:e2022JB025229
Number of pages:21
Funding institution:Deutsche Forschungsgemeinschaft (DFG) [373/34-1]; German Federal State; of Brandenburg; North-German Supercomputing Alliance (HLRN); ERC Synergy; Grant Project MEET (Monitoring Earth Evolution through Time) [856555];; Projekt DEAL; European Research Council (ERC) [856555] Funding Source:; European Research Council (ERC)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Hybrid Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.