The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 22 of 117
Back to Result List

Identification of flux trade-offs in metabolic networks

  • Trade-offs are inherent to biochemical networks governing diverse cellular functions, from gene expression to metabolism. Yet, trade-offs between fluxes of biochemical reactions in a metabolic network have not been formally studied. Here, we introduce the concept of absolute flux trade-offs and devise a constraint-based approach, termed FluTO, to identify and enumerate flux trade-offs in a given genome-scale metabolic network. By employing the metabolic networks of Escherichia coli and Saccharomyces cerevisiae, we demonstrate that the flux trade-offs are specific to carbon sources provided but that reactions involved in the cofactor and prosthetic group biosynthesis are present in trade-offs across all carbon sources supporting growth. We also show that absolute flux trade-offs depend on the biomass reaction used to model the growth of Arabidopsis thaliana under different carbon and nitrogen conditions. The identified flux trade-offs reflect the tight coupling between nitrogen, carbon, and sulphur metabolisms in leaves of C-3 plants.Trade-offs are inherent to biochemical networks governing diverse cellular functions, from gene expression to metabolism. Yet, trade-offs between fluxes of biochemical reactions in a metabolic network have not been formally studied. Here, we introduce the concept of absolute flux trade-offs and devise a constraint-based approach, termed FluTO, to identify and enumerate flux trade-offs in a given genome-scale metabolic network. By employing the metabolic networks of Escherichia coli and Saccharomyces cerevisiae, we demonstrate that the flux trade-offs are specific to carbon sources provided but that reactions involved in the cofactor and prosthetic group biosynthesis are present in trade-offs across all carbon sources supporting growth. We also show that absolute flux trade-offs depend on the biomass reaction used to model the growth of Arabidopsis thaliana under different carbon and nitrogen conditions. The identified flux trade-offs reflect the tight coupling between nitrogen, carbon, and sulphur metabolisms in leaves of C-3 plants. Altogether, FluTO provides the means to explore the space of alternative metabolic routes reflecting the constraints imposed by inherent flux trade-offs in large-scale metabolic networks.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Seirana HashemiORCiD, Zahra Razaghi-MoghadamORCiD, Zoran NikoloskiORCiDGND
DOI:https://doi.org/10.1038/s41598-021-03224-9
ISSN:2045-2322
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/34893666
Title of parent work (English):Scientific reports
Publisher:Macmillan Publishers Limited, part of Springer Nature
Place of publishing:London
Publication type:Article
Language:English
Date of first publication:2021/12/10
Publication year:2021
Release date:2023/07/06
Volume:11
Issue:1
Article number:23776
Number of pages:10
Funding institution:DFGGerman Research Foundation (DFG)European Commission [NI 1472/4-2]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
6 Technik, Medizin, angewandte Wissenschaften / 60 Technik / 600 Technik, Technologie
Peer review:Referiert
Publishing method:Open Access / Gold Open-Access
DOAJ gelistet
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.