The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 198 of 20578
Back to Result List

Spatial patterns of aboveground phytogenic Si stocks in a grass-dominated catchment

  • Various studies have been performed to quantify silicon (Si) stocks in plant biomass and related Si fluxes in terrestrial biogeosystems. Most studies are deliberately designed on the plot scale to ensure low heterogeneity in soils and plant composition, hence similar environmental conditions. Due to the immanent spatial soil variability, the transferability of results to larger areas, such as catchments, is therefore limited. However, the emergence of new technical features and increasing knowledge on details in Si cycling lead to a more complex picture at landscape and catchment scales. Dynamic and static soil properties change along the soil continuum and might influence not only the species composition of natural vegetation but also its biomass distribution and related Si stocks. Maximum likelihood (ML) classification was applied to multispectral imagery captured by an unmanned aerial system (UAS) aiming at the identification of land cover classes (LCCs). Subsequently, the normalized difference vegetation index (NDVI) andVarious studies have been performed to quantify silicon (Si) stocks in plant biomass and related Si fluxes in terrestrial biogeosystems. Most studies are deliberately designed on the plot scale to ensure low heterogeneity in soils and plant composition, hence similar environmental conditions. Due to the immanent spatial soil variability, the transferability of results to larger areas, such as catchments, is therefore limited. However, the emergence of new technical features and increasing knowledge on details in Si cycling lead to a more complex picture at landscape and catchment scales. Dynamic and static soil properties change along the soil continuum and might influence not only the species composition of natural vegetation but also its biomass distribution and related Si stocks. Maximum likelihood (ML) classification was applied to multispectral imagery captured by an unmanned aerial system (UAS) aiming at the identification of land cover classes (LCCs). Subsequently, the normalized difference vegetation index (NDVI) and ground-based measurements of biomass were used to quantify aboveground Si stocks in two Si-accumulating plants (Calamagrostis epige-jos and Phragmites australis) in a heterogeneous catchment and related corresponding spatial patterns of these stocks to soil properties. We found aboveground Si stocks of C. epige-jos and P. australis to be surprisingly high (maxima of Si stocks reach values up to 98 g Sim(-2)), i.e. comparable to or markedly exceeding reported values for the Si storage in aboveground vegetation of various terrestrial ecosystems. We further found spatial patterns of plant aboveground Si stocks to reflect spatial heterogeneities in soil properties. From our results, we concluded that (i) aboveground biomass of plants seems to be the main factor of corresponding phytogenic Si stock quantities, and (ii) a detection of biomass heterogeneities via UAS-based remote sensing represents a promising tool for the quantification of lifelike phytogenic Si pools at landscape scales.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Marc Wehrhan, Daniel PuppeORCiDGND, Danuta KaczorekORCiD, Michael SommerORCiDGND
DOI:https://doi.org/10.5194/bg-18-5163-2021
ISSN:1726-4170
ISSN:1726-4189
Title of parent work (English):Biogeosciences : BG
Subtitle (English):results from UAS-based high-resolution remote sensing
Publisher:Copernicus
Place of publishing:Göttingen
Publication type:Article
Language:English
Date of first publication:2021/09/22
Publication year:2021
Release date:2024/02/28
Volume:18
Issue:18
Number of pages:21
First page:5163
Last Page:5183
Funding institution:Deutsche Forschungsgemeinschaft (DFG), German Research Foundation (DFG) [SO 302/7-1, PU 626/21]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer review:Referiert
Publishing method:Open Access / Gold Open-Access
DOAJ gelistet
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.