• search hit 3 of 95
Back to Result List

Using Cy5-dUTP labelling of RPA-amplicons with downstream microarray analysis for the detection of antibiotic resistance genes

  • In this report we describe Cy5-dUTP labelling of recombinase-polymerase-amplification (RPA) products directly during the amplification process for the first time. Nucleic acid amplification techniques, especially polymerase-chain-reaction as well as various isothermal amplification methods such as RPA, becomes a promising tool in the detection of pathogens and target specific genes. Actually, RPA even provides more advantages. This isothermal method got popular in point of care diagnostics because of its speed and sensitivity but requires pre-labelled primer or probes for a following detection of the amplicons. To overcome this disadvantages, we performed an labelling of RPA-amplicons with Cy5-dUTP without the need of pre-labelled primers. The amplification results of various multiple antibiotic resistance genes indicating great potential as a flexible and promising tool with high specific and sensitive detection capabilities of the target genes. After the determination of an appropriate rate of 1% Cy5-dUTP and 99% unlabelled dTTP weIn this report we describe Cy5-dUTP labelling of recombinase-polymerase-amplification (RPA) products directly during the amplification process for the first time. Nucleic acid amplification techniques, especially polymerase-chain-reaction as well as various isothermal amplification methods such as RPA, becomes a promising tool in the detection of pathogens and target specific genes. Actually, RPA even provides more advantages. This isothermal method got popular in point of care diagnostics because of its speed and sensitivity but requires pre-labelled primer or probes for a following detection of the amplicons. To overcome this disadvantages, we performed an labelling of RPA-amplicons with Cy5-dUTP without the need of pre-labelled primers. The amplification results of various multiple antibiotic resistance genes indicating great potential as a flexible and promising tool with high specific and sensitive detection capabilities of the target genes. After the determination of an appropriate rate of 1% Cy5-dUTP and 99% unlabelled dTTP we were able to detect the bla(CTX-M15) gene in less than 1.6E-03 ng genomic DNA corresponding to approximately 200 cfu of Escherichia coli cells in only 40 min amplification time.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Christian Warmt, Carolin Kornelia Fenzel, Jörg Henkel, Frank Fabian BierORCiDGND
DOI:https://doi.org/10.1038/s41598-021-99774-z
ISSN:2045-2322
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/34635776
Title of parent work (English):Scientific reports
Publisher:Macmillan Publishers Limited, part of Springer Nature
Place of publishing:[London]
Publication type:Article
Language:English
Date of first publication:2021/10/11
Publication year:2021
Release date:2023/11/08
Volume:11
Issue:1
Article number:20137
Number of pages:9
Funding institution:Projekt DEAL
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
6 Technik, Medizin, angewandte Wissenschaften / 60 Technik / 600 Technik, Technologie
Peer review:Referiert
Publishing method:Open Access / Gold Open-Access
DOAJ gelistet
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.