• search hit 3 of 0
Back to Result List

Carbon and nutrient cycling in kettle hole sediments depending on hydrological dynamics: a review

  • Kettle holes as a specific group of isolated, small lentic freshwater systems (LFS) often are (i) hot spots of biogeochemical cycling and (ii) exposed to frequent sediment desiccation and rewetting. Their ecological functioning is greatly determined by immanent carbon and nutrient transformations. The objective of this review is to elucidate effects of a changing hydrological regime (i.e., dry-wet cycles) on carbon and nutrient cycling in kettle hole sediments. Generally, dry-wet cycles have the potential to increase C and N losses as well as P availability. However, their duration and frequency are important controlling factors regarding direction and intensity of biogeochemical and microbiological responses. To evaluate drought impacts on sediment carbon and nutrient cycling in detail requires the context of the LFS hydrological history. For example, frequent drought events induce physiological adaptation of exposed microbial communities and thus flatten metabolic responses, whereas rare events provoke unbalanced, strong microbialKettle holes as a specific group of isolated, small lentic freshwater systems (LFS) often are (i) hot spots of biogeochemical cycling and (ii) exposed to frequent sediment desiccation and rewetting. Their ecological functioning is greatly determined by immanent carbon and nutrient transformations. The objective of this review is to elucidate effects of a changing hydrological regime (i.e., dry-wet cycles) on carbon and nutrient cycling in kettle hole sediments. Generally, dry-wet cycles have the potential to increase C and N losses as well as P availability. However, their duration and frequency are important controlling factors regarding direction and intensity of biogeochemical and microbiological responses. To evaluate drought impacts on sediment carbon and nutrient cycling in detail requires the context of the LFS hydrological history. For example, frequent drought events induce physiological adaptation of exposed microbial communities and thus flatten metabolic responses, whereas rare events provoke unbalanced, strong microbial responses. Different potential of microbial resilience to drought stress can irretrievably change microbial communities and functional guilds, gearing cascades of functional responses. Hence, dry-wet events can shift the biogeochemical cycling of organic matter and nutrients to a new equilibrium, thus affecting the dynamic balance between carbon burial and mineralization in kettle holes.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Florian Reverey, Hans-Peter GroßartORCiDGND, Katrin Premke, Gunnar LischeidORCiDGND
DOI:https://doi.org/10.1007/s10750-016-2715-9
ISSN:0018-8158
ISSN:1573-5117
Title of parent work (English):Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica
Publisher:Springer
Place of publishing:Dordrecht
Publication type:Review
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Tag:Drought; Kettle hole; Nitrogen; Organic matter; Phosphorus; Rewetting; Temporary pond
Volume:775
Number of pages:20
First page:1
Last Page:20
Funding institution:Leibniz Association in the frame of the SAW Project "LandScales"
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.