• search hit 1 of 2
Back to Result List

Insights into the microbiome assembly during different growth stages and storage of strawberry plants

  • Background: Microbiome assembly was identified as an important factor for plant growth and health, but this process is largely unknown, especially for the fruit microbiome. Therefore, we analyzed strawberry plants of two cultivars by focusing on microbiome tracking during the different growth stages and storage using amplicon sequencing, qPCR, and microscopic approaches. <br /> Results: Strawberry plants carried a highly diverse microbiome, therein the bacterial families Sphingomonadaceae (25%), Pseudomonadaceae (17%), and Burkholderiaceae (11%); and the fungal family Mycosphaerella (45%) were most abundant. All compartments were colonized by high number of bacteria and fungi (10(7)-10(10) marker gene copies per g fresh weight), and were characterized by high microbial diversity (6049 and 1501 ASVs); both were higher for the belowground samples than in the phyllosphere. Compartment type was the main driver of microbial diversity, structure, and abundance (bacterial: 45%; fungal: 61%) when compared to the cultivar (1.6%; 2.2%).Background: Microbiome assembly was identified as an important factor for plant growth and health, but this process is largely unknown, especially for the fruit microbiome. Therefore, we analyzed strawberry plants of two cultivars by focusing on microbiome tracking during the different growth stages and storage using amplicon sequencing, qPCR, and microscopic approaches. <br /> Results: Strawberry plants carried a highly diverse microbiome, therein the bacterial families Sphingomonadaceae (25%), Pseudomonadaceae (17%), and Burkholderiaceae (11%); and the fungal family Mycosphaerella (45%) were most abundant. All compartments were colonized by high number of bacteria and fungi (10(7)-10(10) marker gene copies per g fresh weight), and were characterized by high microbial diversity (6049 and 1501 ASVs); both were higher for the belowground samples than in the phyllosphere. Compartment type was the main driver of microbial diversity, structure, and abundance (bacterial: 45%; fungal: 61%) when compared to the cultivar (1.6%; 2.2%). Microbiome assembly was strongly divided for belowground habitats and the phyllosphere; only a low proportion of the microbiome was transferred from soil via the rhizosphere to the phyllosphere. During fruit development, we observed the highest rates of microbial transfer from leaves and flowers to ripe fruits, where most of the bacteria occured inside the pulp. In postharvest fruits, microbial diversity decreased while the overall abundance increased. Developing postharvest decay caused by Botrytis cinerea decreased the diversity as well, and induced a reduction of potentially beneficial taxa. <br /> Conclusion: Our findings provide insights into microbiome assembly in strawberry plants and highlight the importance of microbe transfer during fruit development and storage with potential implications for food health and safety.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Expedito OlimiORCiD, Peter KusstatscherORCiD, Wisnu Adi WicaksonoORCiD, Ahmed AbdelfattahORCiD, Tomislav CernavaORCiD, Gabriele BergORCiDGND
DOI:https://doi.org/10.1186/s40793-022-00415-3
ISSN:2524-6372
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/35484554
Title of parent work (English):Environmental microbiome
Publisher:BMC
Place of publishing:London
Publication type:Article
Language:English
Date of first publication:2022/04/28
Publication year:2022
Release date:2024/02/22
Tag:Amplicon sequencing; Bacterial; CLSM; Fragaria x ananassa; Fruit pathogens; Fungal communities; Microbiome assembly; communities
Volume:17
Issue:1
Article number:21
Number of pages:15
Funding institution:European Union's Horizon 2020 Research and Innovation Program [81794]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer review:Referiert
Publishing method:Open Access / Gold Open-Access
DOAJ gelistet
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.