• search hit 1 of 2
Back to Result List

Non-diffusive angular momentum transport in rotating z-pinches

  • The stability of conducting Taylor-Couette flows under the presence of toroidal magnetic background fields is considered. For strong enough magnetic amplitudes such magnetohydrodynamic flows are unstable against non-axisymmetric perturbations which may also transport angular momentum. In accordance with the often used diffusion approximation, one expects the angular momentum transport to be vanishing for rigid rotation. In the sense of a non-diffusive Lambda effect, however, even for rigidly rotating z-pinches, an axisymmetric angular momentum flux appears which is directed outward (inward) for large (small) magnetic Mach numbers. The internal rotation in a magnetized rotating tank can thus never be uniform. Those particular rotation laws are used to estimate the value of the instability-induced eddy viscosity for which the non-diffusive Lambda effect and the diffusive shear-induced transport compensate each other. The results provide the Shakura & Sunyaev viscosity ansatz leading to numerical values linearly growing with the appliedThe stability of conducting Taylor-Couette flows under the presence of toroidal magnetic background fields is considered. For strong enough magnetic amplitudes such magnetohydrodynamic flows are unstable against non-axisymmetric perturbations which may also transport angular momentum. In accordance with the often used diffusion approximation, one expects the angular momentum transport to be vanishing for rigid rotation. In the sense of a non-diffusive Lambda effect, however, even for rigidly rotating z-pinches, an axisymmetric angular momentum flux appears which is directed outward (inward) for large (small) magnetic Mach numbers. The internal rotation in a magnetized rotating tank can thus never be uniform. Those particular rotation laws are used to estimate the value of the instability-induced eddy viscosity for which the non-diffusive Lambda effect and the diffusive shear-induced transport compensate each other. The results provide the Shakura & Sunyaev viscosity ansatz leading to numerical values linearly growing with the applied magnetic field.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Günther RüdigerORCiDGND, M. Schultz
DOI:https://doi.org/10.1017/S0022377819000606
ISSN:0022-3778
ISSN:1469-7807
Title of parent work (English):Journal of plasma physics
Publisher:Cambridge Univ. Press
Place of publishing:New York
Publication type:Article
Language:English
Year of first publication:2019
Publication year:2019
Release date:2020/09/28
Tag:astrophysical plasmas; plasma instabilities
Volume:85
Issue:6
Number of pages:16
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer review:Referiert
Publishing method:Open Access
Open Access / Green Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.