• Treffer 2 von 4
Zurück zur Trefferliste

A particle-field approach bridges phase separation and collective motion in active matter

  • Whereas self-propelled hard discs undergo motility-induced phase separation, self-propelled rods exhibit a variety of nonequilibrium phenomena, including clustering, collective motion, and spatio-temporal chaos. In this work, we present a theoretical framework representing active particles by continuum fields. This concept combines the simplicity of alignment-based models, enabling analytical studies, and realistic models that incorporate the shape of self-propelled objects explicitly. By varying particle shape from circular to ellipsoidal, we show how nonequilibrium stresses acting among self-propelled rods destabilize motility-induced phase separation and facilitate orientational ordering, thereby connecting the realms of scalar and vectorial active matter. Though the interaction potential is strictly apolar, both, polar and nematic order may emerge and even coexist. Accordingly, the symmetry of ordered states is a dynamical property in active matter. The presented framework may represent various systems including bacterialWhereas self-propelled hard discs undergo motility-induced phase separation, self-propelled rods exhibit a variety of nonequilibrium phenomena, including clustering, collective motion, and spatio-temporal chaos. In this work, we present a theoretical framework representing active particles by continuum fields. This concept combines the simplicity of alignment-based models, enabling analytical studies, and realistic models that incorporate the shape of self-propelled objects explicitly. By varying particle shape from circular to ellipsoidal, we show how nonequilibrium stresses acting among self-propelled rods destabilize motility-induced phase separation and facilitate orientational ordering, thereby connecting the realms of scalar and vectorial active matter. Though the interaction potential is strictly apolar, both, polar and nematic order may emerge and even coexist. Accordingly, the symmetry of ordered states is a dynamical property in active matter. The presented framework may represent various systems including bacterial colonies, cytoskeletal extracts, or shaken granular media. Interacting self-propelled particles exhibit phase separation or collective motion depending on particle shape. A unified theory connecting these paradigms represents a major challenge in active matter, which the authors address here by modeling active particles as continuum fields.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Robert GroßmannORCiD, Igor S. AransonORCiDGND, Fernando PeruaniORCiD
DOI:https://doi.org/10.1038/s41467-020-18978-5
ISSN:2041-1723
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/33097711
Titel des übergeordneten Werks (Englisch):Nature Communications
Verlag:Nature Publishing Group
Verlagsort:London
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:23.10.2020
Erscheinungsjahr:2020
Datum der Freischaltung:04.10.2022
Band:11
Ausgabe:1
Aufsatznummer:5365
Seitenanzahl:12
Fördernde Institution:Agence Nationale de la RechercheFrench National Research Agency; (ANR)European Commission [ANR-15-CE30-0002-01]; People Programme (Marie; Curie Actions) of the European Union's Seventh Framework Programme; (FP7/2007-2013) under REA grant through the PRESTIGE programme; [PCOFUND-GA-2013-609102]; NSFNational Science Foundation (NSF); [PHY-1707900]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer Review:Referiert
Publikationsweg:Open Access / Gold Open-Access
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.