• Treffer 3 von 11
Zurück zur Trefferliste

Core Catalysis of the Reductive Glycine Pathway Demonstrated in Yeast

  • One-carbon (C1) compounds are attractive microbial feedstocks as they can be efficiently produced from widely available resources. Formate, in particular, represents a promising growth substrate, as it can be generated from electrochemical reduction of CO2 and fed to microorganisms in a soluble form. We previously identified the synthetic reductive glycine pathway as the most efficient route for aerobic growth on formate. We further demonstrated pathway activity in Escherichia coli after expression of both native and foreign genes. Here, we explore whether the reductive glycine pathway could be established in a model microorganism using only native enzymes. We used the yeast Saccharomyces cerevisiae as host and show that overexpression of only endogenous enzymes enables glycine biosynthesis from formate and CO2 in a strain that is otherwise auxotrophic for glycine. We find the pathway to be highly active in this host, where 0.125 mM formate is sufficient to support growth. Notably, the formate-dependent growth rate of the engineeredOne-carbon (C1) compounds are attractive microbial feedstocks as they can be efficiently produced from widely available resources. Formate, in particular, represents a promising growth substrate, as it can be generated from electrochemical reduction of CO2 and fed to microorganisms in a soluble form. We previously identified the synthetic reductive glycine pathway as the most efficient route for aerobic growth on formate. We further demonstrated pathway activity in Escherichia coli after expression of both native and foreign genes. Here, we explore whether the reductive glycine pathway could be established in a model microorganism using only native enzymes. We used the yeast Saccharomyces cerevisiae as host and show that overexpression of only endogenous enzymes enables glycine biosynthesis from formate and CO2 in a strain that is otherwise auxotrophic for glycine. We find the pathway to be highly active in this host, where 0.125 mM formate is sufficient to support growth. Notably, the formate-dependent growth rate of the engineered S. cerevisiae strain remained roughly constant over a very wide range of formate concentrations, 1-500 mM, indicating both high affinity for formate use and high tolerance toward elevated concentration of this C1 feedstock. Our results, as well the availability of endogenous NAD-dependent formate dehydrogenase, indicate that yeast might be an especially suitable host for engineering growth on formate.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Jorge Gonzalez de la Cruz, Fabian MachensORCiDGND, Katrin MesserschmidtORCiDGND, Arren Bar-EvenORCiD
DOI:https://doi.org/10.1021/acssynbio.8b00464
ISSN:2161-5063
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/31002757
Titel des übergeordneten Werks (Englisch):ACS synthetic biology
Verlag:American Chemical Society
Verlagsort:Washington
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:17.05.2019
Erscheinungsjahr:2019
Datum der Freischaltung:24.02.2021
Freies Schlagwort / Tag:carbon labeling; glycine cleavage system; metabolic engineering; one-carbon metabolism; synthetic biology; tetrahydrofolate
Band:8
Ausgabe:5
Seitenanzahl:13
Erste Seite:911
Letzte Seite:917
Fördernde Institution:Max Planck SocietyMax Planck Society
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer Review:Referiert
Publikationsweg:Open Access / Hybrid Open-Access
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.