• Treffer 1 von 2
Zurück zur Trefferliste

On the Molecular Origin of Charge Separation at the Donor-Acceptor Interface

  • Fullerene-based acceptors have dominated organic solar cells for almost two decades. It is only within the last few years that alternative acceptors rival their dominance, introducing much more flexibility in the optoelectronic properties of these material blends. However, a fundamental physical understanding of the processes that drive charge separation at organic heterojunctions is still missing, but urgently needed to direct further material improvements. Here a combined experimental and theoretical approach is used to understand the intimate mechanisms by which molecular structure contributes to exciton dissociation, charge separation, and charge recombination at the donor-acceptor (D-A) interface. Model systems comprised of polythiophene-based donor and rylene diimide-based acceptor polymers are used and a detailed density functional theory (DFT) investigation is performed. The results point to the roles that geometric deformations and direct-contact intermolecular polarization play in establishing a driving force ( energyFullerene-based acceptors have dominated organic solar cells for almost two decades. It is only within the last few years that alternative acceptors rival their dominance, introducing much more flexibility in the optoelectronic properties of these material blends. However, a fundamental physical understanding of the processes that drive charge separation at organic heterojunctions is still missing, but urgently needed to direct further material improvements. Here a combined experimental and theoretical approach is used to understand the intimate mechanisms by which molecular structure contributes to exciton dissociation, charge separation, and charge recombination at the donor-acceptor (D-A) interface. Model systems comprised of polythiophene-based donor and rylene diimide-based acceptor polymers are used and a detailed density functional theory (DFT) investigation is performed. The results point to the roles that geometric deformations and direct-contact intermolecular polarization play in establishing a driving force ( energy gradient) for the optoelectronic processes taking place at the interface. A substantial impact for this driving force is found to stem from polymer deformations at the interface, a finding that can clearly lead to new design approaches in the development of the next generation of conjugated polymers and small molecules.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Gjergji SiniORCiD, Marcel SchubertORCiD, Chad Risko, Steffen RolandORCiDGND, Olivia P. Lee, Zhihua Chen, Thomas V. Richter, Daniel Dolfen, Veaceslav Coropceanu, Sabine Ludwigs, Ullrich ScherfORCiDGND, Antonio Facchetti, Jean M. J. FrechetORCiD, Dieter NeherORCiDGND
DOI:https://doi.org/10.1002/aenm.201702232
ISSN:1614-6832
ISSN:1614-6840
Titel des übergeordneten Werks (Englisch):Advanced energy materials
Verlag:Wiley-VCH
Verlagsort:Weinheim
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:22.01.2018
Erscheinungsjahr:2018
Datum der Freischaltung:08.12.2021
Freies Schlagwort / Tag:donor-acceptor interfaces; energy gradients; geometrical deformations; nonfullerene acceptors; organic photovoltaics; photocurrent generation; polymer solar cells
Band:8
Ausgabe:12
Seitenanzahl:15
Fördernde Institution:University of Kentucky; Department of the Navy, Office of Naval ResearchOffice of Naval Research [N00014-16-1-2985, N00014-14-1-0580, N00014-16-1-2520]; German Science FoundationGerman Research Foundation (DFG) [SPP 1355]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer Review:Referiert
Publikationsweg:Open Access / Bronze Open-Access
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.