• search hit 1 of 28
Back to Result List

Analytical approach to synchronous states of globally coupled noisy rotators

  • We study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phaseWe study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phase shifts in coupling) are dispersed.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Vyacheslav O. MunyaevORCiD, Lev A. SmirnovORCiD, Vasily A. KostinORCiD, Grigory V. OsipovORCiDGND, Arkadij PikovskijORCiDGND
DOI:https://doi.org/10.1088/1367-2630/ab6f93
ISSN:1367-2630
Title of parent work (English):New journal of physics : the open-access journal for physics
Publisher:IOP Publ. Ltd.
Place of publishing:Bristol
Publication type:Article
Language:English
Date of first publication:2020/02/26
Publication year:2020
Release date:2023/10/10
Tag:Kuramoto; coupled rotators; hysteresis; model; noisy systems; synchronization transition
Volume:22
Issue:2
Article number:023036
Number of pages:14
Funding institution:RSF Russian Science Foundation (RSF) [17-12-01534, 1912-00367]; RFBR Russian Foundation for Basic Research (RFBR) [19-52-12053]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 52 Astronomie / 520 Astronomie und zugeordnete Wissenschaften
5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer review:Referiert
Publishing method:Open Access / Gold Open-Access
DOAJ gelistet
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.