• search hit 4 of 8
Back to Result List

Reuse of a phosphorus recovery product (struvite/palygorskite) from nutrient wastewater for copper remediation in aqueous solution and soil

  • In this study, a phosphorus recovery product, struvite palygorskite (S-PAL), obtained from nutrient-rich wastewater by using MgO modified palygorskite was applied for copper remediation in aqueous solution and contaminated soil to achieve waste recycling. The effects of contact time, initial pH, initial Cu(II) concentration and reaction temperature on Cu(II) adsorption in aqueous solution were intensively testified. Pseudo-second-order model was able to properly describe Cu(II) adsorption kinetics by using palygorskite (PAL) and S-PAL, and S-PAL exhibited higher adsorption amount (106.27 mg/g) than PAL (8.46 mg/g) at pH of 4. Cu(II) adsorption on PAL and S-PAL could be well fitted by Freundlich isotherm and Langmuir isotherm, respectively. The calculated thermodynamic parameters indicated that Cu(II) adsorption onto PAL and S-PAL were spontaneous and endothermic. A 28-day soil incubation experiment was conducted to evaluate the effects of PAL and S-PAL with three different rates (1%, 5% and 10% w/w) on Cu immobilization inIn this study, a phosphorus recovery product, struvite palygorskite (S-PAL), obtained from nutrient-rich wastewater by using MgO modified palygorskite was applied for copper remediation in aqueous solution and contaminated soil to achieve waste recycling. The effects of contact time, initial pH, initial Cu(II) concentration and reaction temperature on Cu(II) adsorption in aqueous solution were intensively testified. Pseudo-second-order model was able to properly describe Cu(II) adsorption kinetics by using palygorskite (PAL) and S-PAL, and S-PAL exhibited higher adsorption amount (106.27 mg/g) than PAL (8.46 mg/g) at pH of 4. Cu(II) adsorption on PAL and S-PAL could be well fitted by Freundlich isotherm and Langmuir isotherm, respectively. The calculated thermodynamic parameters indicated that Cu(II) adsorption onto PAL and S-PAL were spontaneous and endothermic. A 28-day soil incubation experiment was conducted to evaluate the effects of PAL and S-PAL with three different rates (1%, 5% and 10% w/w) on Cu immobilization in contaminated soil. In the immobilization test, Cu extracted by 0.01 mol/L CaCl2 after seven days incubation significantly decreased with increasing rate of PAL and S-PAL. BCR sequential extraction results showed the significant decrease of acid soluble Cu and a concomitant increase of the residual fraction of Cu after S-PAL and PAL addition. XRD patterns of soil samples after treatment by PAL and S-PAL showed the formation of Cu0.6Mg1.3Si2O6 and Cu-3.04(PO4)(2)OH0.08 center dot 2H(2)O, which indicated that silanol groups and phosphate exhibited affinity for Cu in the soil.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Hao Wang, Xuejiang WangORCiD, Weishi WangORCiDGND, Yinglong Su, Jianfu Zhao
DOI:https://doi.org/10.1016/j.geoderma.2019.113955
ISSN:0016-7061
ISSN:1872-6259
Title of parent work (English):Geoderma : an international journal of soil science
Publisher:Elsevier Science
Place of publishing:Amsterdam [u.a.]
Publication type:Article
Language:English
Date of first publication:2020/01/01
Publication year:2020
Release date:2023/10/10
Tag:adsorption; copper immobilization; palygorskite; struvite; waste reuse
Volume:357
Article number:113955
Number of pages:10
Funding institution:National Natural Science Foundation of ChinaNational Natural Science; Foundation of China (NSFC) [51678421, 41571301, 21777120]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
DDC classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
Peer review:Referiert
Publishing method:Open Access / Bronze Open-Access
DOAJ gelistet
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.