• Treffer 1 von 4
Zurück zur Trefferliste

Energetic footprints of irreversibility in the quantum regime

  • In classical thermodynamic processes the unavoidable presence of irreversibility, quantified by the entropy production, carries two energetic footprints: the reduction of extractable work from the optimal, reversible case, and the generation of a surplus of heat that is irreversibly dissipated to the environment. Recently it has been shown that in the quantum regime an additional quantum irreversibility occurs that is linked to decoherence into the energy basis. Here we employ quantum trajectories to construct distributions for classical heat and quantum heat exchanges, and show that the heat footprint of quantum irreversibility differs markedly from the classical case. We also quantify how quantum irreversibility reduces the amount of work that can be extracted from a state with coherences. Our results show that decoherence leads to both entropic and energetic footprints which both play an important role in the optimization of controlled quantum operations at low temperature. In classical thermodynamics irreversibility occursIn classical thermodynamic processes the unavoidable presence of irreversibility, quantified by the entropy production, carries two energetic footprints: the reduction of extractable work from the optimal, reversible case, and the generation of a surplus of heat that is irreversibly dissipated to the environment. Recently it has been shown that in the quantum regime an additional quantum irreversibility occurs that is linked to decoherence into the energy basis. Here we employ quantum trajectories to construct distributions for classical heat and quantum heat exchanges, and show that the heat footprint of quantum irreversibility differs markedly from the classical case. We also quantify how quantum irreversibility reduces the amount of work that can be extracted from a state with coherences. Our results show that decoherence leads to both entropic and energetic footprints which both play an important role in the optimization of controlled quantum operations at low temperature. In classical thermodynamics irreversibility occurs whenever a non-thermal system is brought into contact with a thermal environment. Using quantum trajectories the authors here establish two energetic footprints of quantum irreversible processes, and find that while quantum irreversibility leads to the occurrence of a quantum heat and a reduction of work production, the two are not linked in the same manner as the classical laws of thermodynamics would dictate.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:M. Hamed MohammadyORCiD, Alexia AuffèvesORCiDGND, Janet AndersORCiD
DOI:https://doi.org/10.1038/s42005-020-0356-9
ISSN:2399-3650
Titel des übergeordneten Werks (Englisch):Communications Physics
Verlag:Springer Nature
Verlagsort:London
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:19.05.2020
Erscheinungsjahr:2020
Datum der Freischaltung:11.03.2024
Freies Schlagwort / Tag:entropy production; quantum mechanics; thermodynamics
Band:3
Ausgabe:1
Aufsatznummer:89
Seitenanzahl:14
Erste Seite:1
Letzte Seite:14
Fördernde Institution:COST network MP1209; National Science Foundation under Grant No. NSF PHY-1748958; EPSRC Grant No. EP/P030815/1; Slovak Academy of Sciences under MoRePro project OPEQ (19MRP0027); Research Collaborative Project “Qu-DICE” (ANR-PRC-CES47); EPSRC (grant EP/R045577/1); Royal Society
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer Review:Referiert
Publikationsweg:Open Access / Gold Open-Access
DOAJ gelistet
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Externe Anmerkung:Zweitveröffentlichung in der Schriftenreihe Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe ; 1435
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.