• Treffer 1 von 1
Zurück zur Trefferliste

Assemblierung von Proteinkomplexen in vitro und in vivo

Assembly of protein complexes in vitro and in vivo

  • Proteine sind an praktisch allen Prozessen in lebenden Zellen maßgeblich beteiligt. Auch in der Biotechnologie werden Proteine in vielfältiger Weise eingesetzt. Ein Protein besteht aus einer Kette von Aminosäuren. Häufig lagern sich mehrere dieser Ketten zu größeren Strukturen und Funktionseinheiten, sogenannten Proteinkomplexen, zusammen. Kürzlich wurde gezeigt, dass eine Proteinkomplexbildung bereits während der Biosynthese der Proteine (co-translational) stattfinden kann und nicht stets erst danach (post-translational) erfolgt. Da Fehlassemblierungen von Proteinen zu Funktionsverlusten und adversen Effekten führen, ist eine präzise und verlässliche Proteinkomplexbildung sowohl für zelluläre Prozesse als auch für biotechnologische Anwendungen essenziell. Mit experimentellen Methoden lassen sich zwar u.a. die Stöchiometrie und die Struktur von Proteinkomplexen bestimmen, jedoch bisher nicht die Dynamik der Komplexbildung auf unterschiedlichen Zeitskalen. Daher sind grundlegende Mechanismen der Proteinkomplexbildung noch nichtProteine sind an praktisch allen Prozessen in lebenden Zellen maßgeblich beteiligt. Auch in der Biotechnologie werden Proteine in vielfältiger Weise eingesetzt. Ein Protein besteht aus einer Kette von Aminosäuren. Häufig lagern sich mehrere dieser Ketten zu größeren Strukturen und Funktionseinheiten, sogenannten Proteinkomplexen, zusammen. Kürzlich wurde gezeigt, dass eine Proteinkomplexbildung bereits während der Biosynthese der Proteine (co-translational) stattfinden kann und nicht stets erst danach (post-translational) erfolgt. Da Fehlassemblierungen von Proteinen zu Funktionsverlusten und adversen Effekten führen, ist eine präzise und verlässliche Proteinkomplexbildung sowohl für zelluläre Prozesse als auch für biotechnologische Anwendungen essenziell. Mit experimentellen Methoden lassen sich zwar u.a. die Stöchiometrie und die Struktur von Proteinkomplexen bestimmen, jedoch bisher nicht die Dynamik der Komplexbildung auf unterschiedlichen Zeitskalen. Daher sind grundlegende Mechanismen der Proteinkomplexbildung noch nicht vollständig verstanden. Die hier vorgestellte, auf experimentellen Erkenntnissen aufbauende, computergestützte Modellierung der Proteinkomplexbildung erlaubt eine umfassende Analyse des Einflusses physikalisch-chemischer Parameter auf den Assemblierungsprozess. Die Modelle bilden möglichst realistisch die experimentellen Systeme der Kooperationspartner (Bar-Ziv, Weizmann-Institut, Israel; Bukau und Kramer, Universität Heidelberg) ab, um damit die Assemblierung von Proteinkomplexen einerseits in einem quasi-zweidimensionalen synthetischen Expressionssystem (in vitro) und andererseits im Bakterium Escherichia coli (in vivo) untersuchen zu können. Mit Hilfe eines vereinfachten Expressionssystems, in dem die Proteine nur an die Chip-Oberfläche, aber nicht aneinander binden können, wird das theoretische Modell parametrisiert. In diesem vereinfachten in-vitro-System durchläuft die Effizienz der Komplexbildung drei Regime – ein bindedominiertes Regime, ein Mischregime und ein produktionsdominiertes Regime. Ihr Maximum erreicht die Effizienz dabei kurz nach dem Übergang vom bindedominierten ins Mischregime und fällt anschließend monoton ab. Sowohl im nicht-vereinfachten in-vitro- als auch im in-vivo-System koexistieren je zwei konkurrierende Assemblierungspfade: Im in-vitro-System erfolgt die Komplexbildung entweder spontan in wässriger Lösung (Lösungsassemblierung) oder aber in einer definierten Schrittfolge an der Chip-Oberfläche (Oberflächenassemblierung); Im in-vivo-System konkurrieren hingegen die co- und die post-translationale Komplexbildung. Es zeigt sich, dass die Dominanz der Assemblierungspfade im in-vitro-System zeitabhängig ist und u.a. durch die Limitierung und Stärke der Bindestellen auf der Chip-Oberfläche beeinflusst werden kann. Im in-vivo-System hat der räumliche Abstand zwischen den Syntheseorten der beiden Proteinkomponenten nur dann einen Einfluss auf die Komplexbildung, wenn die Untereinheiten schnell degradieren. In diesem Fall dominiert die co-translationale Assemblierung auch auf kurzen Zeitskalen deutlich, wohingegen es bei stabilen Untereinheiten zu einem Wechsel von der Dominanz der post- hin zu einer geringen Dominanz der co-translationalen Assemblierung kommt. Mit den in-silico-Modellen lässt sich neben der Dynamik u.a. auch die Lokalisierung der Komplexbildung und -bindung darstellen, was einen Vergleich der theoretischen Vorhersagen mit experimentellen Daten und somit eine Validierung der Modelle ermöglicht. Der hier präsentierte in-silico Ansatz ergänzt die experimentellen Methoden, und erlaubt so, deren Ergebnisse zu interpretieren und neue Erkenntnisse davon abzuleiten.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • SHA-512:0f5f6740b257a5e3d84f186d51f553fe5e61d49ba71ddd3a7a1ae6157fd5e5a2dac56b9062bfc60d280c0129969953aed335ef31814fa5d33510fe6be8b94435

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Stefanie FörsteORCiD
URN:urn:nbn:de:kobv:517-opus4-550742
DOI:https://doi.org/10.25932/publishup-55074
Gutachter*in(nen):Sophia RudorfORCiDGND, Reinhard LipowskyORCiDGND, Edda KlippORCiDGND
Betreuer*in(nen):Reinhard Lipowsky, Sophia Rudorf, Svetlana Santer
Publikationstyp:Dissertation
Sprache:Deutsch
Erscheinungsjahr:2022
Veröffentlichende Institution:Universität Potsdam
Titel verleihende Institution:Universität Potsdam
Datum der Abschlussprüfung:30.03.2022
Datum der Freischaltung:21.06.2022
Freies Schlagwort / Tag:Assemblierung; Lösung; Lösungsassemblierung; Multiproteinkomplexbildung; Oberfläche; Oberflächenassemblierung; Proteine; co-translationale Assemblierung; post-translationale Assemblierung
assembly; co-translational; multi protein complex formation; post-translational; proteins
Seitenanzahl:x, 143, xxxviii
RVK - Regensburger Verbundklassifikation:UV 2100, VK 8568, WD 5275
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
MSC-Klassifikation:92-XX BIOLOGY AND OTHER NATURAL SCIENCES
Lizenz (Deutsch):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.