## 530 Physik

### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (231)
- Preprint (50)
- Postprint (34)
- Article (19)
- Habilitation (17)
- Master's Thesis (8)
- Monograph/Edited Volume (2)
- Conference Proceeding (1)

#### Keywords

- Synchronisation (13)
- synchronization (11)
- Datenanalyse (10)
- data analysis (10)
- Nichtlineare Dynamik (9)
- stochastic processes (9)
- Chaos (8)
- transport (7)
- Polymere (6)
- anomalous diffusion (6)

#### Institute

- Institut für Physik und Astronomie (333)
- Interdisziplinäres Zentrum für Dynamik komplexer Systeme (52)
- Extern (17)
- Institut für Chemie (7)
- Institut für Mathematik (5)
- Institut für Biochemie und Biologie (2)
- Institut für Psychologie (2)
- Mathematisch-Naturwissenschaftliche Fakultät (2)
- Institut für Erd- und Umweltwissenschaften (1)
- Institut für Linguistik / Allgemeine Sprachwissenschaft (1)

- Cosmic-ray neutron sensing and its applications to soil and land surface hydrology (2016)
- Water scarcity, adaption on climate change, and risk assessment of droughts and floods are critical topics for science and society these days. Monitoring and modeling of the hydrological cycle are a prerequisite to understand and predict the consequences for weather and agriculture. As soil water storage plays a key role for partitioning of water fluxes between the atmosphere, biosphere, and lithosphere, measurement techniques are required to estimate soil moisture states from small to large scales. The method of cosmic-ray neutron sensing (CRNS) promises to close the gap between point-scale and remote-sensing observations, as its footprint was reported to be 30 ha. However, the methodology is rather young and requires highly interdisciplinary research to understand and interpret the response of neutrons to soil moisture. In this work, the signal of nine detectors has been systematically compared, and correction approaches have been revised to account for meteorological and geomagnetic variations. Neutron transport simulations have been consulted to precisely characterize the sensitive footprint area, which turned out to be 6--18 ha, highly local, and temporally dynamic. These results have been experimentally confirmed by the significant influence of water bodies and dry roads. Furthermore, mobile measurements on agricultural fields and across different land use types were able to accurately capture the various soil moisture states. It has been further demonstrated that the corresponding spatial and temporal neutron data can be beneficial for mesoscale hydrological modeling. Finally, first tests with a gyrocopter have proven the concept of airborne neutron sensing, where increased footprints are able to overcome local effects. This dissertation not only bridges the gap between scales of soil moisture measurements. It also establishes a close connection between the two worlds of observers and modelers, and further aims to combine the disciplines of particle physics, geophysics, and soil hydrology to thoroughly explore the potential and limits of the CRNS method.

- Complementarity in single photon interference – the role of the mode function and vacuum fields (2017)
- Background In earlier experiments the role of the vacuum fields could be demonstrated as the source of complementarity with respect to the temporal properties (Heuer et al., Phys. Rev. Lett. 114:053601, 2015). Methods Single photon first order interferences of spatially separated regions from the cone structure of spontaneous parametric down conversion allow for analyzing the role of the mode function in quantum optics regarding the complementarity principle. Results Here the spatial coherence properties of these vacuum fields are demonstrated as the physical reason for complementarity in these single photon quantum optical experiments. These results are directly connected to the mode picture in classical optics. Conclusion The properties of the involved vacuum fields selected via the measurement process are the physical background of the complementarity principle in quantum optics.

- Complementarity in single photon interference – the role of the mode function and vacuum fields (2017)
- Background In earlier experiments the role of the vacuum fields could be demonstrated as the source of complementarity with respect to the temporal properties (Heuer et al., Phys. Rev. Lett. 114:053601, 2015). Methods Single photon first order interferences of spatially separated regions from the cone structure of spontaneous parametric down conversion allow for analyzing the role of the mode function in quantum optics regarding the complementarity principle. Results Here the spatial coherence properties of these vacuum fields are demonstrated as the physical reason for complementarity in these single photon quantum optical experiments. These results are directly connected to the mode picture in classical optics. Conclusion The properties of the involved vacuum fields selected via the measurement process are the physical background of the complementarity principle in quantum optics.

- Femtosecond gas phase electron diffraction with MeV electrons (2016)
- We present results on ultrafast gas electron diffraction (UGED) experiments with femtosecond resolution using the MeV electron gun at SLAC National Accelerator Laboratory. UGED is a promising method to investigate molecular dynamics in the gas phase because electron pulses can probe the structure with a high spatial resolution. Until recently, however, it was not possible for UGED to reach the relevant timescale for the motion of the nuclei during a molecular reaction. Using MeV electron pulses has allowed us to overcome the main challenges in reaching femtosecond resolution, namely delivering short electron pulses on a gas target, overcoming the effect of velocity mismatch between pump laser pulses and the probe electron pulses, and maintaining a low timing jitter. At electron kinetic energies above 3 MeV, the velocity mismatch between laser and electron pulses becomes negligible. The relativistic electrons are also less susceptible to temporal broadening due to the Coulomb force. One of the challenges of diffraction with relativistic electrons is that the small de Broglie wavelength results in very small diffraction angles. In this paper we describe the new setup and its characterization, including capturing static diffraction patterns of molecules in the gas phase, finding time-zero with sub-picosecond accuracy and first time-resolved diffraction experiments. The new device can achieve a temporal resolution of 100 fs root-mean-square, and sub-angstrom spatial resolution. The collimation of the beam is sufficient to measure the diffraction pattern, and the transverse coherence is on the order of 2 nm. Currently, the temporal resolution is limited both by the pulse duration of the electron pulse on target and by the timing jitter, while the spatial resolution is limited by the average electron beam current and the signal-to-noise ratio of the detection system. We also discuss plans for improving both the temporal resolution and the spatial resolution.

- Comprehensive analyses of massive binaries and implications on stellar evolution (2017)
- Via their powerful radiation, stellar winds, and supernova explosions, massive stars (Mini & 8 M☉) bear a tremendous impact on galactic evolution. It became clear in recent decades that the majority of massive stars reside in binary systems. This thesis sets as a goal to quantify the impact of binarity (i.e., the presence of a companion star) on massive stars. For this purpose, massive binary systems in the Local Group, including OB-type binaries, high mass X-ray binaries (HMXBs), and Wolf-Rayet (WR) binaries, were investigated by means of spectral, orbital, and evolutionary analyses. The spectral analyses were performed with the non-local thermodynamic equillibrium (non-LTE) Potsdam Wolf-Rayet (PoWR) model atmosphere code. Thanks to critical updates in the calculation of the hydrostatic layers, the code became a state-of-the-art tool applicable for all types of hot massive stars (Chapter 2). The eclipsing OB-type triple system δ Ori served as an intriguing test-case for the new version of the PoWR code, and provided key insights regarding the formation of X-rays in massive stars (Chapter 3). We further analyzed two prototypical HMXBs, Vela X-1 and IGR J17544-2619, and obtained fundamental conclusions regarding the dichotomy of two basic classes of HMXBs (Chapter 4). We performed an exhaustive analysis of the binary R 145 in the Large Magellanic Cloud (LMC), which was claimed to host the most massive stars known. We were able to disentangle the spectrum of the system, and performed an orbital, polarimetric, and spectral analysis, as well as an analysis of the wind-wind collision region. The true masses of the binary components turned out to be significantly lower than suggested, impacting our understanding of the initial mass function and stellar evolution at low metallicity (Chapter 5). Finally, all known WR binaries in the Small Magellanic Cloud (SMC) were analyzed. Although it was theoretical predicted that virtually all WR stars in the SMC should be formed via mass-transfer in binaries, we find that binarity was not important for the formation of the known WR stars in the SMC, implying a strong discrepancy between theory and observations (Chapter 6).

- First passage phenomena and single-file motion in ageing continuous time random walks and quenched energy landscapes (2016)
- In the first part of my work I have investigated the ageing properties of the first passage time distributions in a one-dimensional subdiffusive continuous time random walk with power law distributed waiting times of the form $\psi(\tau) \sim \tau^{-1-\alpha}$ with $0<\alpha<1$ and $1<\alpha<2$. The age or ageing time $t_a$ is the time span from the start of the stochastic process to the start of the observation of this process (at $t=0$). I have calculated the results for a single target and two targets, also including the biased case, where the walker is driven towards the boundary by a constant force. I have furthermore refined the previously derived results for the non-ageing case and investigated the changes that occur when the walk is performed in a discrete quenched energy landscape, where the waiting times are fixed for every site. The results include the exact Laplace space densities and infinite (converging) series as exact results in the time space. The main results are the dominating long time power law behavior regimes, which depend on the ageing time. For the case of unbiased subdiffusion ($\alpha < 1$) in the presence of one target, I find three different dominant terms for ranges of $t$ separated by $t_a$ and another crossover time $t^{\star}$, which depends on $t_a$ as well as on the anomalous exponent $\alpha$ and the anomalous diffusion coefficient $K_{\alpha}$. In all three regimes ($t \ll t_a$, $t_a \ll t \ll t^{\star}$, $t \gg t^{\star}$) one finds power law decay with exponents depending on $\alpha$. The middle regime only exists for $t_a \ll t^{\star}$. The dominant terms in the first two regimes (ageing regimes) come from the probability distribution of the forward waiting time, the time one has to wait for the stochastic process to make the first step during the observation. When the observation time is larger than the second crossover time $t^{\star}$, the first passage time density does not show ageing and the non-ageing first passage time dominates. The power law exponents in the respective regimes are $-\alpha$ for strong ageing, $-1-\alpha$ in the intermediate regime, and $-1-\alpha/2$ in the final non-ageing regime. A similar split into three regimes can be found for $1<\alpha<2$, only with a different second crossover time $t^*$. In this regime the diffusion is normal but also age-dependent. For the diffusion in quenched energy landscapes one cannot detect ageing. The first passage time density shows a quenched power law $^\sim t^{-(1+2\alpha)/(1+\alpha)}$. For diffusion between two target sites and the biased diffusion towards a target only two scaling regimes emerge, separated by the ageing time. In the ageing case $t \ll t_a$ the forward waiting time is again dominant with power law exponent $-\alpha$, while the non-ageing power law $-1-\alpha$ is found for all times $t \gg t_a$. An intermediate regime does not exist. The bias and the confinement have similar effects on the first passage time density. For quenched diffusion, the biased case is interesting, as the bias reduces correlations due to revisiting of the same waiting time. As a result, CTRW like behavior is observed, including ageing. Extensive computer simulations support my findings. The second part of my research was done on the subject of ageing Scher-Montroll transport, which is in parts closely related to the first passage densities. It explains the electrical current in an amorphous material. I have investigated the effect of the width of a given initial distribution of charge carriers on the transport coefficients as well as the ageing effect on the emerging power law regimes and a constant initial regime. While a spread out initial distribution has only little impact on the Scher-Montroll current, ageing alters the behavior drastically. Instead of the two classical power laws one finds four current regimes, up to three of which can appear in a single experiment. The dominant power laws differ for $t \ll t_a, t_c$, $t_a \ll t \ll t_c$, $t_c \ll t \ll t_a$, and $t \gg t_a,t_c$. Here, $t_c$ is the crossover time of the non-aged Scher-Montroll current. For strongly aged systems one can observe a constant current in the first regime while the others are dominated by decaying power laws with exponents $\alpha -1$, $-\alpha$, and $-1-\alpha$. The ageing regimes are the 1st and 3rd one, while the classical regimes are the 2nd and the 4th. I have verified the theory using numerical integration of the exact integrals and applied the new results to experimental data. In the third part I considered a single file of subdiffusing particles in an energy landscape. Every occupied site of the landscape acts as a boundary, from which a particle is immediately reflected to its previous site, if it tries to jump there. I have analysed the effects single-file diffusion a quenched landscape compared to an annealed landscape and I have related these results to the number of steps and related quantities. The diffusion changes from ultraslow logarithmic diffusion in the annealed or CTRW case to subdiffusion with an anomalous exponent $\alpha/(1+\alpha)$ in the quenched landscape. The behavior is caused by the forward waiting time, which changes drastically from the quenched to the annealed case. Single-file effects in the quenched landscape are even more complicated to consider in the ensemble average, since the diffusion in individual landscapes shows extremely diverse behavior. Extensive simulations support my theoretical arguments, which consider mainly the long time evolution of the mean square displacement of a bulk particle.