• Treffer 3 von 4
Zurück zur Trefferliste

Significant contribution of non-vascular vegetation to global rainfall interception

  • Non-vascular vegetation has been shown to capture considerable quantities of rainfall, which may affect the hydrological cycle and climate at continental scales. However, direct measurements of rainfall interception by non-vascular vegetation are confined to the local scale, which makes extrapolation to the global effects difficult. Here we use a process-based numerical simulation model to show that non-vascular vegetation contributes substantially to global rainfall interception. Inferred average global water storage capacity including non-vascular vegetation was 2.7 mm, which is consistent with field observations and markedly exceeds the values used in land surface models, which average around 0.4 mm. Consequently, we find that the total evaporation of free water from the forest canopy and soil surface increases by 61% when non-vascular vegetation is included, resulting in a global rainfall interception flux that is 22% of the terrestrial evaporative flux (compared with only 12% for simulations where interception excludesNon-vascular vegetation has been shown to capture considerable quantities of rainfall, which may affect the hydrological cycle and climate at continental scales. However, direct measurements of rainfall interception by non-vascular vegetation are confined to the local scale, which makes extrapolation to the global effects difficult. Here we use a process-based numerical simulation model to show that non-vascular vegetation contributes substantially to global rainfall interception. Inferred average global water storage capacity including non-vascular vegetation was 2.7 mm, which is consistent with field observations and markedly exceeds the values used in land surface models, which average around 0.4 mm. Consequently, we find that the total evaporation of free water from the forest canopy and soil surface increases by 61% when non-vascular vegetation is included, resulting in a global rainfall interception flux that is 22% of the terrestrial evaporative flux (compared with only 12% for simulations where interception excludes non-vascular vegetation). We thus conclude that non-vascular vegetation is likely to significantly influence global rainfall interception and evaporation with consequences for regional-to continental-scale hydrologic cycling and climate.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Philipp PoradaORCiDGND, John T. Van StanORCiD, Axel KleidonORCiDGND
DOI:https://doi.org/10.1038/s41561-018-0176-7
ISSN:1752-0894
ISSN:1752-0908
Titel des übergeordneten Werks (Englisch):Nature geoscience
Verlag:Nature Publ. Group
Verlagsort:New York
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:23.07.2018
Erscheinungsjahr:2018
Datum der Freischaltung:27.10.2021
Band:11
Ausgabe:8
Seitenanzahl:7
Erste Seite:563
Letzte Seite:+
Fördernde Institution:Bolin Centre for Climate Research; European Union FP7-ENV project PAGE21 [GA282700]; United States National Science FoundationNational Science Foundation (NSF) [EAR-1518726]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.