Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 39 von 242
Zurück zur Trefferliste

Rationalizing the molecular design of hole-selective contacts to improve charge extraction in Perovskite solar cells

  • Two new hole selective materials (HSMs) based on dangling methylsulfanyl groups connected to the C-9 position of the fluorene core are synthesized and applied in perovskite solar cells. Being structurally similar to a half of Spiro-OMeTAD molecule, these HSMs (referred as FS and DFS) share similar redox potentials but are endowed with slightly higher hole mobility, due to the planarity and large extension of their structure. Competitive power conversion efficiency (up to 18.6%) is achieved by using the new HSMs in suitable perovskite solar cells. Time-resolved photoluminescence decay measurements and electrochemical impedance spectroscopy show more efficient charge extraction at the HSM/perovskite interface with respect to Spiro-OMeTAD, which is reflected in higher photocurrents exhibited by DFS/FS-integrated perovskite solar cells. Density functional theory simulations reveal that the interactions of methylammonium with methylsulfanyl groups in DFS/FS strengthen their electrostatic attraction with the perovskite surface, providing anTwo new hole selective materials (HSMs) based on dangling methylsulfanyl groups connected to the C-9 position of the fluorene core are synthesized and applied in perovskite solar cells. Being structurally similar to a half of Spiro-OMeTAD molecule, these HSMs (referred as FS and DFS) share similar redox potentials but are endowed with slightly higher hole mobility, due to the planarity and large extension of their structure. Competitive power conversion efficiency (up to 18.6%) is achieved by using the new HSMs in suitable perovskite solar cells. Time-resolved photoluminescence decay measurements and electrochemical impedance spectroscopy show more efficient charge extraction at the HSM/perovskite interface with respect to Spiro-OMeTAD, which is reflected in higher photocurrents exhibited by DFS/FS-integrated perovskite solar cells. Density functional theory simulations reveal that the interactions of methylammonium with methylsulfanyl groups in DFS/FS strengthen their electrostatic attraction with the perovskite surface, providing an additional path for hole extraction compared to the sole presence of methoxy groups in Spiro-OMeTAD. Importantly, the low-cost synthesis of FS makes it significantly attractive for the future commercialization of perovskite solar cells.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Qiong WangORCiD, Edoardo Mosconi, Christian Michael WolffORCiDGND, Junming Li, Dieter NeherORCiDGND, Filippo De Angelis, Gian Paolo Suranna, Roberto Grisorio, Antonio AbateORCiD
DOI:https://doi.org/10.1002/aenm.201900990
ISSN:1614-6832
ISSN:1614-6840
Titel des übergeordneten Werks (Englisch):dvanced energy materials
Verlag:Wiley-VCH
Verlagsort:Weinheim
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:24.06.2019
Erscheinungsjahr:2019
Datum der Freischaltung:14.01.2021
Freies Schlagwort / Tag:hole extraction; hole selective materials; perovskite solar cells; sulfur; triple-cation perovskite
Band:9
Ausgabe:28
Seitenanzahl:9
Fördernde Institution:Bridge-Early Stage COMPOSTRONICS project [5730587]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China Scientifica e Tecnologica", MIUR (Rome, Italy); University of Perugia, under the "Dipartimenti di Eccellenza 2018-2022" (Grant AMIS); European Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH, OCPC; Fuzhou University
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer Review:Referiert
Publikationsweg:Open Access / Green Open-Access
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.