• Treffer 26 von 86
Zurück zur Trefferliste

Towards a smart encapsulation system for small-sized electronic devices: a new approach

  • Miniaturized analytical chip devices like biosensors nowadays provide assistance in highly diverse fields of application such as point-of-care diagnostics and industrial bioprocess engineering. However, upon contact with fluids, the sensor requires a protective shell for its electrical components that simultaneously offers controlled access for the target analytes to the measuring units. We therefore developed a capsule that comprises a permeable and a sealed compartment consisting of variable polymers such as biocompatible and biodegradable polylactic acid (PLA) for medical applications or more economical polyvinyl chloride (PVC) and polystyrene (PS) polymers for bioengineering applications. Production of the sealed capsule compartments was performed by heat pressing of polymer pellets placed in individually designable molds. Controlled permeability of the opposite compartments was achieved by inclusion of NaCl inside the polymer matrix during heat pressing, followed by its subsequent release in aqueous solution. CorrelatingMiniaturized analytical chip devices like biosensors nowadays provide assistance in highly diverse fields of application such as point-of-care diagnostics and industrial bioprocess engineering. However, upon contact with fluids, the sensor requires a protective shell for its electrical components that simultaneously offers controlled access for the target analytes to the measuring units. We therefore developed a capsule that comprises a permeable and a sealed compartment consisting of variable polymers such as biocompatible and biodegradable polylactic acid (PLA) for medical applications or more economical polyvinyl chloride (PVC) and polystyrene (PS) polymers for bioengineering applications. Production of the sealed capsule compartments was performed by heat pressing of polymer pellets placed in individually designable molds. Controlled permeability of the opposite compartments was achieved by inclusion of NaCl inside the polymer matrix during heat pressing, followed by its subsequent release in aqueous solution. Correlating diffusion rates through the so made permeable capsule compartments were quantified for preselected model analytes: glucose, peroxidase, and polystyrene beads of three different diameters (1.4 mu m, 4.2 mu m, and 20.0 mu m). In summary, the presented capsule system turned out to provide sufficient shelter for small-sized electronic devices and gives insight into its potential permeability for defined substances of analytical interest.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Sebastian-Tim Schmitz-Hertzberg, Rick Liese, Carsten Terjung, Frank Fabian BierORCiDGND
DOI:https://doi.org/10.1155/2014/713603
ISSN:1687-9422
ISSN:1687-9430
Titel des übergeordneten Werks (Englisch):International journal of polymer science
Verlag:Hindawi Publishing Corp.
Verlagsort:New York
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2014
Erscheinungsjahr:2014
Datum der Freischaltung:27.03.2017
Seitenanzahl:12
Fördernde Institution:Ministry of Economy and Europe of the State of Brandenburg; European Fund for Regional Development (EFRD)
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer Review:Referiert
Publikationsweg:Open Access
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.