• Treffer 1 von 1
Zurück zur Trefferliste

Blood Flow Suppresses Vascular Anomalies in a Zebrafish Model of Cerebral Cavernous Malformations

  • RATIONALE: Pathological biomechanical signaling induces vascular anomalies including cerebral cavernous malformations (CCM), which are caused by a clonal loss of CCM1/KRIT1 (Krev interaction trapped protein 1), CCM2/MGC4607, or CCM3/PDCD10. Why patients typically experience lesions only in lowly perfused venous capillaries of the cerebrovasculature is completely unknown. OBJECTIVE: In contrast, animal models with a complete loss of CCM proteins lack a functional heart and blood flow and exhibit vascular anomalies within major blood vessels as well. This finding raises the possibility that hemodynamics may play a role in the context of this vascular pathology. METHODS AND RESULTS: Here, we used a genetic approach to restore cardiac function and blood flow in a zebrafish model of CCM1. We find that blood flow prevents cardiovascular anomalies including a hyperplastic expansion within a large Ccm1-deficient vascular bed, the lateral dorsal aorta. CONCLUSIONS: This study identifies blood flow as an important physiological factor that isRATIONALE: Pathological biomechanical signaling induces vascular anomalies including cerebral cavernous malformations (CCM), which are caused by a clonal loss of CCM1/KRIT1 (Krev interaction trapped protein 1), CCM2/MGC4607, or CCM3/PDCD10. Why patients typically experience lesions only in lowly perfused venous capillaries of the cerebrovasculature is completely unknown. OBJECTIVE: In contrast, animal models with a complete loss of CCM proteins lack a functional heart and blood flow and exhibit vascular anomalies within major blood vessels as well. This finding raises the possibility that hemodynamics may play a role in the context of this vascular pathology. METHODS AND RESULTS: Here, we used a genetic approach to restore cardiac function and blood flow in a zebrafish model of CCM1. We find that blood flow prevents cardiovascular anomalies including a hyperplastic expansion within a large Ccm1-deficient vascular bed, the lateral dorsal aorta. CONCLUSIONS: This study identifies blood flow as an important physiological factor that is protective in the cause of this devastating vascular pathology.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Claudia Jasmin RödelORCiD, Cecile OttenORCiDGND, Stefan DonatORCiDGND, Marta Sofia Rocha LourençoGND, Dorothea Fischer, Benno KuropkaORCiDGND, Alessio PaoliniORCiDGND, Christian FreundORCiDGND, Salim Abdelilah-SeyfriedORCiDGND
DOI:https://doi.org/10.1161/CIRCRESAHA.119.315076
ISSN:0009-7330
ISSN:1524-4571
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/31495257
Titel des übergeordneten Werks (Englisch):Circulation Research
Verlag:Lippincott Williams & Wilkins
Verlagsort:Philadelphia
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:09.09.2019
Erscheinungsjahr:2019
Datum der Freischaltung:25.10.2020
Freies Schlagwort / Tag:animal models; cerebral cavernous malformations; endothelial cell; hemodynamics; zebrafish
Band:125
Ausgabe:10
Seitenanzahl:12
Erste Seite:E43
Letzte Seite:E54
Fördernde Institution:Excellence cluster REBIRTH, SFB958; Deutsche Forschungsgemeinschaft (DFG)German Research Foundation (DFG) [SE2016/7-2, SE2016/10-1]; DZHK
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.