• Treffer 1 von 1
Zurück zur Trefferliste

A flexible approach to assess fluorescence decay functions in complex energy transfer systems

  • Background: Time-correlated Forster resonance energy transfer (FRET) probes molecular distances with greater accuracy than intensity-based calculation of FRET efficiency and provides a powerful tool to study biomolecular structure and dynamics. Moreover, time-correlated photon count measurements bear additional information on the variety of donor surroundings allowing more detailed differentiation between distinct structural geometries which are typically inaccessible to general fitting solutions. Results: Here we develop a new approach based on Monte Carlo simulations of time-correlated FRET events to estimate the time-correlated single photon counts (TCSPC) histograms in complex systems. This simulation solution assesses the full statistics of time-correlated photon counts and distance distributions of fluorescently labeled biomolecules. The simulations are consistent with the theoretical predictions of the dye behavior in FRET systems with defined dye distances and measurements of randomly distributed dye solutions. We validateBackground: Time-correlated Forster resonance energy transfer (FRET) probes molecular distances with greater accuracy than intensity-based calculation of FRET efficiency and provides a powerful tool to study biomolecular structure and dynamics. Moreover, time-correlated photon count measurements bear additional information on the variety of donor surroundings allowing more detailed differentiation between distinct structural geometries which are typically inaccessible to general fitting solutions. Results: Here we develop a new approach based on Monte Carlo simulations of time-correlated FRET events to estimate the time-correlated single photon counts (TCSPC) histograms in complex systems. This simulation solution assesses the full statistics of time-correlated photon counts and distance distributions of fluorescently labeled biomolecules. The simulations are consistent with the theoretical predictions of the dye behavior in FRET systems with defined dye distances and measurements of randomly distributed dye solutions. We validate the simulation results using a highly heterogeneous aggregation system and explore the conditions to use this tool in complex systems. Conclusion: This approach is powerful in distinguishing distance distributions in a wide variety of experimental setups, thus providing a versatile tool to accurately distinguish between different structural assemblies in highly complex systems.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Christoph Röthlein, Markus S. Miettinen, Zoya Ignatova
DOI:https://doi.org/10.1186/s13628-015-0020-z
ISSN:2046-1682
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/25897394
Titel des übergeordneten Werks (Englisch):BMC biophysics
Verlag:BioMed Central
Verlagsort:London
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2015
Erscheinungsjahr:2015
Datum der Freischaltung:27.03.2017
Freies Schlagwort / Tag:Complex heterogeneous systems; Monte-Carlo simulations; Protein aggregation; Time resolved FRET
Band:8
Seitenanzahl:10
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer Review:Referiert
Publikationsweg:Open Access
Externe Anmerkung:Zweitveröffentlichung in der Schriftenreihe Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe ; 819
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.