• Treffer 1 von 11
Zurück zur Trefferliste

A regulatory role of autophagy for resetting the memory of heat stress in plants

  • As sessile life forms, plants are repeatedly confronted with adverse environmental conditions, which can impair development, growth, and reproduction. During evolution, plants have established mechanisms to orchestrate the delicate balance between growth and stress tolerance, to reset cellular biochemistry once stress vanishes, or to keep a molecular memory, which enables survival of a harsher stress that may arise later. Although there are several examples of memory in diverse plants species, the molecular machinery underlying the formation, duration, and resetting of stress memories is largely unknown so far. We report here that autophagy, a central self-degradative process, assists in resetting cellular memory of heat stress (HS) in Arabidopsis thaliana. Autophagy is induced by thermopriming (moderate HS) and, intriguingly, remains high long after stress termination. We demonstrate that autophagy mediates the specific degradation of heat shock proteins at later stages of the thermorecovery phase leading to the accumulation ofAs sessile life forms, plants are repeatedly confronted with adverse environmental conditions, which can impair development, growth, and reproduction. During evolution, plants have established mechanisms to orchestrate the delicate balance between growth and stress tolerance, to reset cellular biochemistry once stress vanishes, or to keep a molecular memory, which enables survival of a harsher stress that may arise later. Although there are several examples of memory in diverse plants species, the molecular machinery underlying the formation, duration, and resetting of stress memories is largely unknown so far. We report here that autophagy, a central self-degradative process, assists in resetting cellular memory of heat stress (HS) in Arabidopsis thaliana. Autophagy is induced by thermopriming (moderate HS) and, intriguingly, remains high long after stress termination. We demonstrate that autophagy mediates the specific degradation of heat shock proteins at later stages of the thermorecovery phase leading to the accumulation of protein aggregates after the second HS and a compromised heat tolerance. Autophagy mutants retain heat shock proteins longer than wild type and concomitantly display improved thermomemory. Our findings reveal a novel regulatory mechanism for HS memory in plants.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Mastoureh SedaghatmehrORCiDGND, Venkatesh P. ThirumalaikumarORCiDGND, Iman KamranfarORCiDGND, Anne MarmagneORCiD, Celine Masclaux-DaubresseORCiD, Salma BalazadehORCiDGND
DOI:https://doi.org/10.1111/pce.13426
ISSN:0140-7791
ISSN:1365-3040
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/30136402
Titel des übergeordneten Werks (Englisch):Plant, cell & environment : cell physiology, whole-plant physiology, community physiology
Verlag:Wiley
Verlagsort:Hoboken
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:22.08.2019
Erscheinungsjahr:2019
Datum der Freischaltung:26.03.2021
Freies Schlagwort / Tag:Arabidopsis; heat shock proteins; priming; resetting
Band:42
Ausgabe:3
Seitenanzahl:11
Erste Seite:1054
Letzte Seite:1064
Fördernde Institution:DAAD PROCOPE programme (PPP Frankreich) [57207509]; LabEx Saclay Plant Sciences-SPS [ANR-10-LABX-0040-SPS]; German Science Foundation (DFG), Collaborative Research Centre 973 "Priming and Memory of Organismic Responses to Stress"
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.