The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 13 of 710
Back to Result List

On the relationship between Atlantic meridional overturning circulation slowdown and global surface warming

  • According to established understanding, deep-water formation in the North Atlantic and Southern Ocean keeps the deep ocean cold, counter-acting the downward mixing of heat from the warmer surface waters in the bulk of the world ocean. Therefore, periods of strong Atlantic meridional overturning circulation (AMOC) are expected to coincide with cooling of the deep ocean and warming of the surface waters. It has recently been proposed that this relation may have reversed due to global warming, and that during the past decades a strong AMOC coincides with warming of the deep ocean and relative cooling of the surface, by transporting increasingly warmer waters downward. Here we present multiple lines of evidence, including a statistical evaluation of the observed global mean temperature, ocean heat content, and different AMOC proxies, that lead to the opposite conclusion: even during the current ongoing global temperature rise a strong AMOC warms the surface. The observed weakening of the AMOC has therefore delayed global surface warmingAccording to established understanding, deep-water formation in the North Atlantic and Southern Ocean keeps the deep ocean cold, counter-acting the downward mixing of heat from the warmer surface waters in the bulk of the world ocean. Therefore, periods of strong Atlantic meridional overturning circulation (AMOC) are expected to coincide with cooling of the deep ocean and warming of the surface waters. It has recently been proposed that this relation may have reversed due to global warming, and that during the past decades a strong AMOC coincides with warming of the deep ocean and relative cooling of the surface, by transporting increasingly warmer waters downward. Here we present multiple lines of evidence, including a statistical evaluation of the observed global mean temperature, ocean heat content, and different AMOC proxies, that lead to the opposite conclusion: even during the current ongoing global temperature rise a strong AMOC warms the surface. The observed weakening of the AMOC has therefore delayed global surface warming rather than enhancing it. Social Media Abstract: The overturning circulation in the Atlantic Ocean has weakened in response to global warming, as predicted by climate models. Since it plays an important role in transporting heat, nutrients and carbon, a slowdown will affect global climate processes and the global mean temperature. Scientists have questioned whether this slowdown has worked to cool or warm global surface temperatures. This study analyses the overturning strength and global mean temperature evolution of the past decades and shows that a slowdown acts to reduce the global mean temperature. This is because a slower overturning means less water sinks into the deep ocean in the subpolar North Atlantic. As the surface waters are cold there, the sinking normally cools the deep ocean and thereby indirectly warms the surface, thus less sinking implies less surface warming and has a cooling effect. For the foreseeable future, this means that the slowing of the overturning will likely continue to slightly reduce the effect of the general warming due to increasing greenhouse gas concentrations.show moreshow less

Download full text files

  • SHA-512ca78c4da0b9bf1bba4bef3de28d2715f8584df36fea7b1cfbcd0c2f6d733d98e4f463800244c4caf65f3884c1b27d72283a4ada506899810e57bd5c187455b68

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Levke CaesarORCiDGND, Stefan RahmstorfORCiDGND, Georg FeulnerORCiDGND
URN:urn:nbn:de:kobv:517-opus4-512382
DOI:https://doi.org/10.25932/publishup-51238
ISSN:1866-8372
Title of parent work (German):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Publication series (Volume number):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (1426)
Publication type:Postprint
Language:English
Date of first publication:2020/01/20
Publication year:2020
Publishing institution:Universität Potsdam
Release date:2024/03/13
Tag:Atlantic meridional overturning circulation; global surface warming; ocean heat uptake
Issue:2
Article number:024003
Number of pages:9
Source:L Caesar et al 2020 Environ. Res. Lett. 15 024003
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Green Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
External remark:Bibliographieeintrag der Originalveröffentlichung/Quelle
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.