• Treffer 15 von 5346
Zurück zur Trefferliste

Triaxial residual stress in Laser Powder Bed Fused 316L

  • The control of residual stress (RS) remains a challenge in the manufacturing of metallic parts using the laser powder bed fusion process (LPBF). This layer-by-layer manufacturing approach gives rise to complex triaxial RS distributions, which require extensive characterization effort for a broader acceptance of LPBF in industry. This study focuses on the distribution of bulk triaxial RS and surface RS in LPBF austenitic steel 316L. The RS are determined by X-ray and neutron diffraction to characterize the RS distribution. Variations in the LPBF parameters interlayer time (ILT) and scanning velocity and their influence on the temperature distribution and resulting RS is investigated using thermographic data from in situ process monitoring. The RS in the LPBF 316L is tensile at the surface and compressive in the bulk. The RS is directly related to the thermal history of the part as shown by the in situ thermography data. Shorter ILT leads to higher temperatures of the part during the manufacturing, which decrease the RS and RS formationThe control of residual stress (RS) remains a challenge in the manufacturing of metallic parts using the laser powder bed fusion process (LPBF). This layer-by-layer manufacturing approach gives rise to complex triaxial RS distributions, which require extensive characterization effort for a broader acceptance of LPBF in industry. This study focuses on the distribution of bulk triaxial RS and surface RS in LPBF austenitic steel 316L. The RS are determined by X-ray and neutron diffraction to characterize the RS distribution. Variations in the LPBF parameters interlayer time (ILT) and scanning velocity and their influence on the temperature distribution and resulting RS is investigated using thermographic data from in situ process monitoring. The RS in the LPBF 316L is tensile at the surface and compressive in the bulk. The RS is directly related to the thermal history of the part as shown by the in situ thermography data. Shorter ILT leads to higher temperatures of the part during the manufacturing, which decrease the RS and RS formation mechanisms. Interestingly, the surface RS does not agree with this observation. This study highlights the benefit of using multiple RS determination methods and in situ thermography monitoring to characterize the RS in LPBF processed parts.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Maximilian SprengelORCiDGND, Gunther Mohr, Simon J. AltenburgORCiD, Alexander Evans, Itziar Serrano-MunozORCiD, Arne KrommORCiD, Thilo PirlingORCiD, Giovanni BrunoORCiDGND, Thomas KannengießerORCiDGND
DOI:https://doi.org/10.1002/adem.202101330
ISSN:1438-1656
ISSN:1527-2648
Titel des übergeordneten Werks (Englisch):Advanced engineering materials
Untertitel (Englisch):effects of interlayer time and scanning velocity
Verlag:Wiley-VCH
Verlagsort:Weinheim
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:09.12.2021
Erscheinungsjahr:2021
Datum der Freischaltung:29.04.2024
Freies Schlagwort / Tag:X-ray and neutron diffractions; in situ thermography; interlayer time; laser powder bed fusions; triaxial residual stresses
Band:24
Ausgabe:6
Aufsatznummer:2101330
Seitenanzahl:13
Fördernde Institution:BAM Focus Area Materials project AGIL "Microstructure Development in; Additively Manufactured Metallic Components: from Powder to Mechanical; Failure"; ProMoAM " Process monitoring of Additive Manufacturing";; Projekt DEAL
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
6 Technik, Medizin, angewandte Wissenschaften / 66 Chemische Verfahrenstechnik / 660 Chemische Verfahrenstechnik
Peer Review:Referiert
Publikationsweg:Open Access / Hybrid Open-Access
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.