• search hit 4 of 11
Back to Result List

On the toroidal-velocity antidynamo theorem under the presence of nonuniform electric conductivity

  • Laminar electrically conducting Couette flows with the hydrodynamically stable quasi-Keplerian rotation profile and nonuniform conductivity are probed for dynamo instability. In spherical geometry, the equations for the poloidal and the toroidal field components completely decouple, resulting in free decay, regardless of the spatial distribution of the electric conductivity. In cylindrical geometry the poloidal and toroidal components do not decouple, but here also we do not find dynamo excitations for the cases that the electric conductivity only depends on the radius or - much more complex- that it only depends on the azimuthal or the axial coordinate. The transformation of the plane-flow dynamo model of Busse and Wicht (1992) to cylindrical or spherical geometry therefore fails. It is also shown that even the inclusion of axial flows of both directions does not support the dynamo mechanism. The Elsasser toroidal-velocity antidynamo theorem, according to which dynamos without any radial velocity component cannot work, is thus notLaminar electrically conducting Couette flows with the hydrodynamically stable quasi-Keplerian rotation profile and nonuniform conductivity are probed for dynamo instability. In spherical geometry, the equations for the poloidal and the toroidal field components completely decouple, resulting in free decay, regardless of the spatial distribution of the electric conductivity. In cylindrical geometry the poloidal and toroidal components do not decouple, but here also we do not find dynamo excitations for the cases that the electric conductivity only depends on the radius or - much more complex- that it only depends on the azimuthal or the axial coordinate. The transformation of the plane-flow dynamo model of Busse and Wicht (1992) to cylindrical or spherical geometry therefore fails. It is also shown that even the inclusion of axial flows of both directions does not support the dynamo mechanism. The Elsasser toroidal-velocity antidynamo theorem, according to which dynamos without any radial velocity component cannot work, is thus not softened by nonuniform conductivity distributions.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Günther RüdigerGND, Manfred Schultz
DOI:https://doi.org/10.1002/asna.20224011
ISSN:0004-6337
ISSN:1521-3994
Title of parent work (English):Astronomische Nachrichten = Astronomical notes
Publisher:Wiley-VCH
Place of publishing:Weinheim
Publication type:Article
Language:English
Date of first publication:2022/05/30
Publication year:2022
Release date:2024/01/08
Tag:MHD; Taylor-Couette flow; antidynamo theorem
Volume:343
Issue:5
Article number:e20224011
Number of pages:10
Funding institution:Projekt DEAL
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 52 Astronomie / 520 Astronomie und zugeordnete Wissenschaften
Peer review:Referiert
Publishing method:Open Access / Hybrid Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.