• search hit 3 of 10
Back to Result List

Identifying interesting planetary systems for future X-ray observations

  • X-ray observations of star-planet systems are important to grow our understanding of exoplanets; these observations allow for studies of photoevaporation of the exoplanetary atmosphere, and in some cases even estimations of the size of the outer planetary atmosphere. The German-Russian eROSITA instrument onboard the SRG (Spectrum Roentgen Gamma) mission is performing the first all-sky X-ray survey since the 1990s, and provides X-ray fluxes and spectra of exoplanet host stars over a much larger volume than was accessible before. Using new eROSITA data as well as archival data from XMM-Newton, Chandra, and ROSAT, we estimate mass-loss rates of exoplanets under an energy-limited escape scenario and identify several exoplanets with strong X-ray irradiation and expected mass loss that are amenable to follow-up observations at other wavelengths. We model sample spectra using a toy model of an exoplanetary atmosphere to predict what exoplanet transit observations with future X-ray missions such as Athena will look like and estimate theX-ray observations of star-planet systems are important to grow our understanding of exoplanets; these observations allow for studies of photoevaporation of the exoplanetary atmosphere, and in some cases even estimations of the size of the outer planetary atmosphere. The German-Russian eROSITA instrument onboard the SRG (Spectrum Roentgen Gamma) mission is performing the first all-sky X-ray survey since the 1990s, and provides X-ray fluxes and spectra of exoplanet host stars over a much larger volume than was accessible before. Using new eROSITA data as well as archival data from XMM-Newton, Chandra, and ROSAT, we estimate mass-loss rates of exoplanets under an energy-limited escape scenario and identify several exoplanets with strong X-ray irradiation and expected mass loss that are amenable to follow-up observations at other wavelengths. We model sample spectra using a toy model of an exoplanetary atmosphere to predict what exoplanet transit observations with future X-ray missions such as Athena will look like and estimate the observable X-ray transmission spectrum for a typical hot Jupiter-type exoplanet.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Grace FosterORCiDGND, Katja PoppenhägerORCiDGND
DOI:https://doi.org/10.1002/asna.20220007
ISSN:1521-3994
ArXiv ID:http://arxiv.org/abs/arXiv:2201.04508
Title of parent work (English):Astronomische Nachrichten = Astronomical notes
Publisher:Wiley-VCH
Place of publishing:Berlin
Publication type:Article
Language:English
Date of first publication:2022/02/07
Publication year:2022
Release date:2023/04/17
Tag:X-rays; activity; coronae; general; planetary systems; planets and satellites; stars
Volume:343
Issue:4
Article number:e20220007
Number of pages:7
Funding institution:German Leibniz- Gemeinschaft [P67-2018]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 52 Astronomie / 520 Astronomie und zugeordnete Wissenschaften
Peer review:Referiert
Publishing method:Open Access / Hybrid Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.