• search hit 3 of 71
Back to Result List

Nitrogen enrichment in host plants increases the mortality of common Lepidoptera species

  • The recent decline of Lepidoptera species strongly correlates with the increasing intensification of agriculture in Western and Central Europe. However, the effects of changed host-plant quality through agricultural fertilization on this insect group remain largely unexplored. For this reason, we tested the response of six common butterfly and moth species to host-plant fertilization using fertilizer quantities usually applied in agriculture. The larvae of the study species Coenonympha pamphilus, Lycaena phlaeas, Lycaena tityrus, Pararge aegeria, Rivula sericealis and Timandra comae were distributed according to a split-brood design to three host-plant treatments comprising one control treatment without fertilization and two fertilization treatments with an input of 150 and 300kgNha(-1)year(-1), respectively. In L.tityrus, we used two additional fertilization treatments with an input of 30 and 90kgNha(-1)year(-1), respectively. Fertilization increased the nitrogen concentration of both host-plant species, Rumex acetosella and PoaThe recent decline of Lepidoptera species strongly correlates with the increasing intensification of agriculture in Western and Central Europe. However, the effects of changed host-plant quality through agricultural fertilization on this insect group remain largely unexplored. For this reason, we tested the response of six common butterfly and moth species to host-plant fertilization using fertilizer quantities usually applied in agriculture. The larvae of the study species Coenonympha pamphilus, Lycaena phlaeas, Lycaena tityrus, Pararge aegeria, Rivula sericealis and Timandra comae were distributed according to a split-brood design to three host-plant treatments comprising one control treatment without fertilization and two fertilization treatments with an input of 150 and 300kgNha(-1)year(-1), respectively. In L.tityrus, we used two additional fertilization treatments with an input of 30 and 90kgNha(-1)year(-1), respectively. Fertilization increased the nitrogen concentration of both host-plant species, Rumex acetosella and Poa pratensis, and decreased the survival of larvae in all six Lepidoptera species by at least one-third, without clear differences between sorrel- and grass-feeding species. The declining survival rate in all species contradicts the well-accepted nitrogen-limitation hypothesis, which predicts a positive response in species performance to dietary nitrogen content. In contrast, this study presents the first evidence that current fertilization quantities in agriculture exceed the physiological tolerance of common Lepidoptera species. Our results suggest that (1) the negative effect of plant fertilization on Lepidoptera has previously been underestimated and (2) that it contributes to the range-wide decline of Lepidoptera.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Susanne KurzeORCiDGND, Thilo HeinkenORCiD, Thomas FartmannORCiD
DOI:https://doi.org/10.1007/s00442-018-4266-4
ISSN:0029-8549
ISSN:1432-1939
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/30288608
Title of parent work (English):Oecologia
Publisher:Springer
Place of publishing:New York
Publication type:Article
Language:English
Date of first publication:2018/10/04
Publication year:2018
Release date:2021/06/23
Tag:Agricultural fertilization; Global change; Host-plant quality; Nitrogen-limitation hypothesis; Rearing experiment
Volume:188
Issue:4
Number of pages:11
First page:1227
Last Page:1237
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.