• Treffer 4 von 8
Zurück zur Trefferliste

In vitro monitoring conformational changes of polypeptide monolayers using infrared plasmonic nanoantennas

  • Proteins and peptides play a predominant role in biochemical reactions of living cells. In these complex environments, not only the constitution of the molecules but also their three-dimensional configuration defines their functionality. This so-called secondary structure of proteins is crucial for understanding their function in living matter. Misfolding, for example, is suspected as the cause of neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. Ultimately, it is necessary to study a single protein and its folding dynamics. Here, we report a first step in this direction, namely ultrasensitive detection and discrimination of in vitro polypeptide folding and unfolding processes using resonant plasmonic nanoantennas for surface-enhanced vibrational spectroscopy. We utilize poly-l-lysine as a model system which has been functionalized on the gold surface. By in vitro infrared spectroscopy of a single molecular monolayer at the amide I vibrations we directly monitor the reversible conformational changes betweenProteins and peptides play a predominant role in biochemical reactions of living cells. In these complex environments, not only the constitution of the molecules but also their three-dimensional configuration defines their functionality. This so-called secondary structure of proteins is crucial for understanding their function in living matter. Misfolding, for example, is suspected as the cause of neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. Ultimately, it is necessary to study a single protein and its folding dynamics. Here, we report a first step in this direction, namely ultrasensitive detection and discrimination of in vitro polypeptide folding and unfolding processes using resonant plasmonic nanoantennas for surface-enhanced vibrational spectroscopy. We utilize poly-l-lysine as a model system which has been functionalized on the gold surface. By in vitro infrared spectroscopy of a single molecular monolayer at the amide I vibrations we directly monitor the reversible conformational changes between α-helix and β-sheet states induced by controlled external chemical stimuli. Our scheme in combination with advanced positioning of the peptides and proteins and more brilliant light sources is highly promising for ultrasensitive in vitro studies down to the single protein level.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Rostyslav SemenyshynORCiD, Mario HentschelORCiD, Christoph Stanglmair, Tanja Teutsch, Cristina Tarin, Claudia PacholskiORCiDGND, Harald GiessenORCiD, Frank NeubrechORCiD
DOI:https://doi.org/10.1021/acs.nanolett.8b02372
ISSN:1530-6984
ISSN:1530-6992
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/30071729
Titel des übergeordneten Werks (Englisch):Nano letters : a journal dedicated to nanoscience and nanotechnology
Verlag:American Chemical Society
Verlagsort:Washington
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:09.01.2019
Erscheinungsjahr:2018
Datum der Freischaltung:26.05.2021
Freies Schlagwort / Tag:Plasmonics; biosensing; conformational changes; proteins; surface-enhanced infrared absorption spectroscopy
Band:19
Ausgabe:1
Seitenanzahl:7
Erste Seite:1
Letzte Seite:7
Fördernde Institution:ERC Advanced Grant (COMPLEXPLAS); Deutsche ForschungsgemeinschaftGerman Research Foundation (DFG) [SPP1391]; Baden-Wurttemberg Stiftung (PROTEINSENS); MWK Baden-Wurttemberg (IQST); Max Planck SocietyMax Planck Society; BMBFFederal Ministry of Education & Research (BMBF) [03IS2101E]; Deutsche Forschungsgemeinschaft (DFG)German Research Foundation (DFG) [286735196]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.