• search hit 4 of 10
Back to Result List

Equivalence and dissimilarity of ecosystem states

  • Measuring (dis)similarity between ecosystem states is a key theme in ecology. Much of community and ecosystem ecology is devoted to searching for patterns in ecosystem similarity from an external observer's viewpoint, using variables such as species abundances, measures of diversity and complexity. However, from the point of view of organisms in the ecosystem, proportional population growth rates are the only relevant aspect of ecosystem state, because natural selection acts on groups of organisms with different proportional population growth rates. We therefore argue that two ecosystem states are equivalent if and only if, for each species they contain, the proportional population growth rate does not differ between the states. Based on this result, we develop species-level and aggregated summary measures of ecosystem state and discuss their ecological meaning. We illustrate our approach using a long-term dataset on the plankton community from the Central European Lake Constance. We show that the first three principal components ofMeasuring (dis)similarity between ecosystem states is a key theme in ecology. Much of community and ecosystem ecology is devoted to searching for patterns in ecosystem similarity from an external observer's viewpoint, using variables such as species abundances, measures of diversity and complexity. However, from the point of view of organisms in the ecosystem, proportional population growth rates are the only relevant aspect of ecosystem state, because natural selection acts on groups of organisms with different proportional population growth rates. We therefore argue that two ecosystem states are equivalent if and only if, for each species they contain, the proportional population growth rate does not differ between the states. Based on this result, we develop species-level and aggregated summary measures of ecosystem state and discuss their ecological meaning. We illustrate our approach using a long-term dataset on the plankton community from the Central European Lake Constance. We show that the first three principal components of proportional population growth rates describe most of the variation in ecosystem state in Lake Constance. We strongly recommend using proportional population growth rates and the derived equivalence classes for comparative ecosystem studies. This opens up new perspectives on important existing topics such as alternative stable ecosystem states, community assembly, and the processes generating regularities in ecosystems.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Alice Boit, Matthew Spencer
DOI:https://doi.org/10.1016/j.ecolmodel.2019.01.009
ISSN:0304-3800
ISSN:1872-7026
Title of parent work (English):Ecological modelling : international journal on ecological modelling and engineering and systems ecolog
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2019
Publication year:2019
Release date:2021/03/15
Tag:Ecosystem dissimilarity; Ecosystem dynamics; Hutchinson niche; Per capita growth rate; Proportional population growth rate
Volume:396
Number of pages:11
First page:12
Last Page:22
Funding institution:NERCNERC Natural Environment Research Council [NE/K00297X/1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Hybrid Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.