• Treffer 8 von 13
Zurück zur Trefferliste

Probing the oxidation state of transition metal complexes

  • Transition metals in inorganic systems and metalloproteins can occur in different oxidation states, which makes them ideal redox-active catalysts. To gain a mechanistic understanding of the catalytic reactions, knowledge of the oxidation state of the active metals, ideally in operando, is therefore critical. L-edge X-ray absorption spectroscopy (XAS) is a powerful technique that is frequently used to infer the oxidation state via a distinct blue shift of L-edge absorption energies with increasing oxidation state. A unified description accounting for quantum-chemical notions whereupon oxidation does not occur locally on the metal but on the whole molecule and the basic understanding that L-edge XAS probes the electronic structure locally at the metal has been missing to date. Here we quantify how charge and spin densities change at the metal and throughout the molecule for both redox and core-excitation processes. We explain the origin of the L-edge XAS shift between the high-spin complexes Mn-II(acac)(2) and Mn-III(acac)(3) asTransition metals in inorganic systems and metalloproteins can occur in different oxidation states, which makes them ideal redox-active catalysts. To gain a mechanistic understanding of the catalytic reactions, knowledge of the oxidation state of the active metals, ideally in operando, is therefore critical. L-edge X-ray absorption spectroscopy (XAS) is a powerful technique that is frequently used to infer the oxidation state via a distinct blue shift of L-edge absorption energies with increasing oxidation state. A unified description accounting for quantum-chemical notions whereupon oxidation does not occur locally on the metal but on the whole molecule and the basic understanding that L-edge XAS probes the electronic structure locally at the metal has been missing to date. Here we quantify how charge and spin densities change at the metal and throughout the molecule for both redox and core-excitation processes. We explain the origin of the L-edge XAS shift between the high-spin complexes Mn-II(acac)(2) and Mn-III(acac)(3) as representative model systems and use ab initio theory to uncouple effects of oxidation-state changes from geometric effects. The shift reflects an increased electron affinity of Mn-III in the core-excited states compared to the ground state due to a contraction of the Mn 3d shell upon core-excitation with accompanied changes in the classical Coulomb interactions. This new picture quantifies how the metal-centered core hole probes changes in formal oxidation state and encloses and substantiates earlier explanations. The approach is broadly applicable to mechanistic studies of redox-catalytic reactions in molecular systems where charge and spin localization/delocalization determine reaction pathways.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Markus Kubin, Meiyuan GuoORCiD, Thomas Kroll, Heike Loechel, Erik Kallman, Michael L. Baker, Rolf MitznerORCiDGND, Sheraz GulORCiD, Jan KernORCiD, Alexander FöhlischORCiDGND, Alexei Erko, Uwe Bergmann, Vittal Yachandra, Junko Yano, Marcus Lundberg, Philippe Wernet
DOI:https://doi.org/10.1039/c8sc00550h
ISSN:2041-6520
ISSN:2041-6539
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/30310614
Titel des übergeordneten Werks (Englisch):Chemical science
Untertitel (Englisch):a case study on how charge and spin densities determine Mn L-edge X-ray absorption energies
Verlag:Royal Society of Chemistry
Verlagsort:Cambridge
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2018
Erscheinungsjahr:2018
Datum der Freischaltung:04.10.2021
Band:9
Ausgabe:33
Seitenanzahl:17
Erste Seite:6813
Letzte Seite:6829
Fördernde Institution:Human Frontiers Science ProgramHuman Frontier Science Program [RGP0063/2013]; Swedish Research CouncilSwedish Research Council; Knut and Alice Wallenberg FoundationKnut & Alice Wallenberg Foundation [KAW-2013.0020]; DOE Office of Biological and Environmental ResearchUnited States Department of Energy (DOE); National Institutes of Health, National Institute of General Medical SciencesUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USANIH National Institute of General Medical Sciences (NIGMS) [P41GM103393]; Helmholtz Virtual Institute "Dynamic Pathways in Multidimensional Landscapes"; Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences of the Department of Energy [DE-AC02-05CH11231]; NIHUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USA [GM110501, GM55302]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer Review:Referiert
Publikationsweg:Open Access / Gold Open-Access
DOAJ gelistet
Externe Anmerkung:Zweitveröffentlichung in der Schriftenreihe Postprints der Universität Potsdam : Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe ; 656
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.