Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 7 von 20
Zurück zur Trefferliste

Energy-gap law for photocurrent generation in fullerene-based organic solar cells

  • The involvement of charge-transfer (CT) states in the photogeneration and recombination of charge carriers has been an important focus of study within the organic photovoltaic community. In this work, we investigate the molecular factors determining the mechanism of photocurrent generation in low-donor-content organic solar cells, where the active layer is composed of vacuum-deposited C-60 and small amounts of organic donor molecules. We find a pronounced decline of all photovoltaic parameters with decreasing CT state energy. Using a combination of steady-state photocurrent measurements and time-delayed collection field experiments, we demonstrate that the power conversion efficiency, and more specifically, the fill factor of these devices, is mainly determined by the bias dependence of photocurrent generation. By combining these findings with the results from ultrafast transient absorption spectroscopy, we show that blends with small CT energies perform poorly because of an increased nonradiative CT state decay rate and that thisThe involvement of charge-transfer (CT) states in the photogeneration and recombination of charge carriers has been an important focus of study within the organic photovoltaic community. In this work, we investigate the molecular factors determining the mechanism of photocurrent generation in low-donor-content organic solar cells, where the active layer is composed of vacuum-deposited C-60 and small amounts of organic donor molecules. We find a pronounced decline of all photovoltaic parameters with decreasing CT state energy. Using a combination of steady-state photocurrent measurements and time-delayed collection field experiments, we demonstrate that the power conversion efficiency, and more specifically, the fill factor of these devices, is mainly determined by the bias dependence of photocurrent generation. By combining these findings with the results from ultrafast transient absorption spectroscopy, we show that blends with small CT energies perform poorly because of an increased nonradiative CT state decay rate and that this decay obeys an energy-gap law. Our work challenges the common view that a large energy offset at the heterojunction and/or the presence of fullerene clusters guarantee efficient CT dissociation and rather indicates that charge generation benefits from high CT state energies through a slower decay to the ground state.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Elisa Collado-FregosoORCiD, Silvina N. Pugliese, Mariusz WojcikORCiD, Johannes BenduhnORCiD, Eyal Bar-Or, Lorena Perdigon ToroORCiD, Ulrich HörmannORCiDGND, Donato SpoltoreORCiD, Koen VandewalORCiD, Justin M. HodgkissORCiD, Dieter NeherORCiDGND
DOI:https://doi.org/10.1021/jacs.8b09820
ISSN:0002-7863
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/30620190
Titel des übergeordneten Werks (Englisch):Journal of the American Chemical Society
Untertitel (Englisch):the case of low-donor-content blends
Verlag:American Chemical Society
Verlagsort:Washington
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:13.02.2019
Erscheinungsjahr:2019
Datum der Freischaltung:08.04.2021
Band:141
Ausgabe:6
Seitenanzahl:13
Erste Seite:2329
Letzte Seite:2341
Fördernde Institution:German Ministry of Science and Education (BMBF)Federal Ministry of Education & Research (BMBF) [FKZ 13N13719]; Deutsche Forschungsgemeinschaft (DFG)German Research Foundation (DFG) [182087777-SFB 951]; New Zealand Ministry of Business, Innovation, and Employment, via a Catalyst grant; BMBFFederal Ministry of Education & Research (BMBF) [03IPT602X]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.