Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 6 von 2714
Zurück zur Trefferliste

Accounting for theory errors with empirical Bayesian noise models in nonlinear centroid moment tensor estimation

  • Centroid moment tensor (CMT) parameters can be estimated from seismic waveforms. Since these data indirectly observe the deformation process, CMTs are inferred as solutions to inverse problems which are generally underdetermined and require significant assumptions, including assumptions about data noise. Broadly speaking, we consider noise to include both theory and measurement errors, where theory errors are due to assumptions in the inverse problem and measurement errors are caused by the measurement process. While data errors are routinely included in parameter estimation for full CMTs, less attention has been paid to theory errors related to velocity-model uncertainties and how these affect the resulting moment-tensor (MT) uncertainties. Therefore, rigorous uncertainty quantification for CMTs may require theory-error estimation which becomes a problem of specifying noise models. Various noise models have been proposed, and these rely on several assumptions. All approaches quantify theory errors by estimating the covariance matrixCentroid moment tensor (CMT) parameters can be estimated from seismic waveforms. Since these data indirectly observe the deformation process, CMTs are inferred as solutions to inverse problems which are generally underdetermined and require significant assumptions, including assumptions about data noise. Broadly speaking, we consider noise to include both theory and measurement errors, where theory errors are due to assumptions in the inverse problem and measurement errors are caused by the measurement process. While data errors are routinely included in parameter estimation for full CMTs, less attention has been paid to theory errors related to velocity-model uncertainties and how these affect the resulting moment-tensor (MT) uncertainties. Therefore, rigorous uncertainty quantification for CMTs may require theory-error estimation which becomes a problem of specifying noise models. Various noise models have been proposed, and these rely on several assumptions. All approaches quantify theory errors by estimating the covariance matrix of data residuals. However, this estimation can be based on explicit modelling, empirical estimation and/or ignore or include covariances. We quantitatively compare several approaches by presenting parameter and uncertainty estimates in nonlinear full CMT estimation for several simulated data sets and regional field data of the M-1 4.4, 2015 June 13 Fox Creek, Canada, event. While our main focus is at regional distances, the tested approaches are general and implemented for arbitrary source model choice. These include known or unknown centroid locations, full MTs, deviatoric MTs and double-couple MTs. We demonstrate that velocity-model uncertainties can profoundly affect parameter estimation and that their inclusion leads to more realistic parameter uncertainty quantification. However, not all approaches perform equally well. Including theory errors by estimating non-stationary (non-Toeplitz) error covariance matrices via iterative schemes during Monte Carlo sampling performs best and is computationally most efficient. In general, including velocity-model uncertainties is most important in cases where velocity structure is poorly known.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Hannes Vasyura-BathkeORCiDGND, Jan DettmerORCiD, Rishabh DuttaORCiD, Paul Martin MaiORCiDGND, Sigurjón JónssonORCiDGND
DOI:https://doi.org/10.1093/gji/ggab034
ISSN:0956-540X
ISSN:1365-246X
Titel des übergeordneten Werks (Englisch):Geophysical journal international / the Royal Astronomical Society, the Deutsche Geophysikalische Gesellschaft and the European Geophysical Society
Verlag:Oxford University Press
Verlagsort:Oxford
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:25.01.2021
Erscheinungsjahr:2021
Datum der Freischaltung:25.04.2024
Freies Schlagwort / Tag:Earthquake source observations; Inverse theory; Probability distributions; Seismic noise; Waveform inversion
Band:225
Ausgabe:2
Seitenanzahl:20
Erste Seite:1412
Letzte Seite:1431
Fördernde Institution:Seismological Facilities for the Advancement of Geoscience (SAGE) Award of the National Science Foundation [EAR-1851048]; King Abdullah University of Science and Technology (KAUST)King Abdullah University of Science & Technology [BAS/1/1353-01-01, BAS/1/1339-01-1]; Geo.X, the Research Network for Geosciences in Berlin [SO 087 GeoX]; Geo.X, the Research Network for Geosciences in Potsdam [SO 087 GeoX]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer Review:Referiert
Publikationsweg:Open Access / Bronze Open-Access
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.