The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 32 of 88
Back to Result List

Shear-wave velocity structure at Mt. Etna from inversion of Rayleigh-wave dispersion patterns (2 s < T < 20 s)

  • In the present study, we investigated the dispersion characteristics of medium-to-long period Rayleigh waves (2 s < T < 20 s) using both single-station techniques (multiple-filter analysis, and phase-match filter) and multichannel techniques (horizontal slowness [p] and angular frequency [omega] stack, and cross-correlation) to determine the velocity structure for the Mt. Etna volcano. We applied these techniques to a dataset of teleseisms, as regional and local earthquakes recorded by two broad-band seismic arrays installed at Mt. Etna in 2002 and 2005, during two seismic surveys organized by the Istituto Nazionale di Geofisica e Vulcanologia (INGV), sezione di Napoli. The dispersion curves obtained showed phase velocities ranging from 1.5 km/s to 4.0 km/s in the frequency band 0.05 Hz to 0.45 Hz. We inverted the average phase velocity dispersion curves using a non-linear approach, to obtain a set of shear-wave velocity models with maximum resolution depths of 25 km to 30 km. Moreover, the presence of lateral velocity contrasts wasIn the present study, we investigated the dispersion characteristics of medium-to-long period Rayleigh waves (2 s < T < 20 s) using both single-station techniques (multiple-filter analysis, and phase-match filter) and multichannel techniques (horizontal slowness [p] and angular frequency [omega] stack, and cross-correlation) to determine the velocity structure for the Mt. Etna volcano. We applied these techniques to a dataset of teleseisms, as regional and local earthquakes recorded by two broad-band seismic arrays installed at Mt. Etna in 2002 and 2005, during two seismic surveys organized by the Istituto Nazionale di Geofisica e Vulcanologia (INGV), sezione di Napoli. The dispersion curves obtained showed phase velocities ranging from 1.5 km/s to 4.0 km/s in the frequency band 0.05 Hz to 0.45 Hz. We inverted the average phase velocity dispersion curves using a non-linear approach, to obtain a set of shear-wave velocity models with maximum resolution depths of 25 km to 30 km. Moreover, the presence of lateral velocity contrasts was checked by dividing the whole array into seven triangular sub-arrays and inverting the dispersion curves relative to each triangle.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Luigia Cristiano, Simona Petrosino, Gilberto Saccorotti, Matthias OhrnbergerORCiDGND, Roberto Scarpa
URL:http://annalsofgeophysics.ingv.it/index.html
DOI:https://doi.org/10.4401/Ag-4574
ISSN:1593-5213
Publication type:Article
Language:English
Year of first publication:2010
Publication year:2010
Release date:2017/03/25
Source:Annals of geophysics. - ISSN 1593-5213. - 53 (2010), 2, S. 69 - 78
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Publishing method:Open Access
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.