• search hit 4 of 17
Back to Result List

Amalgamation in landslide maps

  • Inventories of individually delineated landslides are a key to understanding landslide physics and mitigating their impact. They permit assessment of area-frequency distributions and landslide volumes, and testing of statistical correlations between landslides and physical parameters such as topographic gradient or seismic strong motion. Amalgamation, i.e. the mapping of several adjacent landslides as a single polygon, can lead to potentially severe distortion of the statistics of these inventories. This problem can be especially severe in data sets produced by automated mapping. We present five inventories of earthquake-induced landslides mapped with different materials and techniques and affected by varying degrees of amalgamation. Errors on the total landslide volume and power-law exponent of the area-frequency distribution, resulting from amalgamation, may be up to 200 and 50 %, respectively. We present an algorithm based on image and digital elevation model (DEM) analysis, for automatic identification of amalgamated polygons. OnInventories of individually delineated landslides are a key to understanding landslide physics and mitigating their impact. They permit assessment of area-frequency distributions and landslide volumes, and testing of statistical correlations between landslides and physical parameters such as topographic gradient or seismic strong motion. Amalgamation, i.e. the mapping of several adjacent landslides as a single polygon, can lead to potentially severe distortion of the statistics of these inventories. This problem can be especially severe in data sets produced by automated mapping. We present five inventories of earthquake-induced landslides mapped with different materials and techniques and affected by varying degrees of amalgamation. Errors on the total landslide volume and power-law exponent of the area-frequency distribution, resulting from amalgamation, may be up to 200 and 50 %, respectively. We present an algorithm based on image and digital elevation model (DEM) analysis, for automatic identification of amalgamated polygons. On a set of about 2000 polygons larger than 1000 m(2), tracing landslides triggered by the 1994 Northridge earthquake, the algorithm performs well, with only 2.7-3.6% incorrectly amalgamated landslides missed and 3.9-4.8% correct polygons incorrectly identified as amalgams. This algorithm can be used broadly to check landslide inventories and allow faster correction by automating the identification of amalgamation.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Odin MarcORCiDGND, Niels HoviusORCiDGND
DOI:https://doi.org/10.5194/nhess-15-723-2015
ISSN:1561-8633
Title of parent work (English):Natural hazards and earth system sciences
Subtitle (German):effects and automatic detection
Publisher:Copernicus
Place of publishing:Göttingen
Publication type:Article
Language:English
Date of first publication:2015/04/02
Publication year:2015
Release date:2017/03/27
Volume:15
Issue:4
Number of pages:11
First page:723
Last Page:733
Funding institution:EU [264517]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:9 Geschichte und Geografie / 91 Geografie, Reisen / 910 Geografie, Reisen
Peer review:Referiert
Publishing method:Open Access
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
External remark:Zweitveröffentlichung in der Schriftenreihe Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe ; 485
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.