• search hit 3 of 6
Back to Result List

Unbiasedness of estimation-of-distribution algorithms

  • In the context of black-box optimization, black-box complexity is used for understanding the inherent difficulty of a given optimization problem. Central to our understanding of nature-inspired search heuristics in this context is the notion of unbiasedness. Specialized black-box complexities have been developed in order to better understand the limitations of these heuristics - especially of (population-based) evolutionary algorithms (EAs). In contrast to this, we focus on a model for algorithms explicitly maintaining a probability distribution over the search space: so-called estimation-of-distribution algorithms (EDAs). We consider the recently introduced n-Bernoulli-lambda-EDA framework, which subsumes, for example, the commonly known EDAs PBIL, UMDA, lambda-MMAS(IB), and cGA. We show that an n-Bernoulli-lambda-EDA is unbiased if and only if its probability distribution satisfies a certain invariance property under isometric automorphisms of [0, 1](n). By restricting how an n-Bernoulli-lambda-EDA can perform an update, in a wayIn the context of black-box optimization, black-box complexity is used for understanding the inherent difficulty of a given optimization problem. Central to our understanding of nature-inspired search heuristics in this context is the notion of unbiasedness. Specialized black-box complexities have been developed in order to better understand the limitations of these heuristics - especially of (population-based) evolutionary algorithms (EAs). In contrast to this, we focus on a model for algorithms explicitly maintaining a probability distribution over the search space: so-called estimation-of-distribution algorithms (EDAs). We consider the recently introduced n-Bernoulli-lambda-EDA framework, which subsumes, for example, the commonly known EDAs PBIL, UMDA, lambda-MMAS(IB), and cGA. We show that an n-Bernoulli-lambda-EDA is unbiased if and only if its probability distribution satisfies a certain invariance property under isometric automorphisms of [0, 1](n). By restricting how an n-Bernoulli-lambda-EDA can perform an update, in a way common to many examples, we derive conciser characterizations, which are easy to verify. We demonstrate this by showing that our examples above are all unbiased. (C) 2018 Elsevier B.V. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Tobias FriedrichORCiDGND, Timo KötzingORCiD, Martin Stefan KrejcaORCiDGND
DOI:https://doi.org/10.1016/j.tcs.2018.11.001
ISSN:0304-3975
ISSN:1879-2294
Title of parent work (English):Theoretical computer science
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2019
Publication year:2019
Release date:2020/11/05
Tag:Estimation-of-distribution algorithm; Theory; Unbiasedness
Volume:785
Number of pages:14
First page:46
Last Page:59
Organizational units:Digital Engineering Fakultät / Hasso-Plattner-Institut für Digital Engineering GmbH
DDC classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 000 Informatik, Informationswissenschaft, allgemeine Werke
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.