• search hit 15 of 66
Back to Result List

Seismicity patterns of earthquake swarms due to fluid intrusion and stress triggering

  • Earthquake swarms are often assumed to result from an intrusion of fluids into the seismogenic zone, causing seismicity patterns which significantly differ from aftershock sequences. But neither the temporal evolution nor the energy release of earthquake swarms is generally well understood. Because of the lack of descriptive empirical laws, the comparison with model simulations is typically restricted to aspects of the overall behaviour such as the frequency- magnitude distribution. However, previous investigations into a large earthquake swarm which occurred in the year 2000 in Vogtland/northwest Bohemia, Central Europe, revealed some well-defined characteristics which allow a rigorous test of model assumptions. In this study, simulations are performed of a discretized fault plane embedded in a 3-D elastic half- space. Earthquakes are triggered by fluid intrusion as well as by co-seismic and post-seismic stress changes. The model is able to reproduce the main observations, such as the fractal temporal occurrence of earthquakes,Earthquake swarms are often assumed to result from an intrusion of fluids into the seismogenic zone, causing seismicity patterns which significantly differ from aftershock sequences. But neither the temporal evolution nor the energy release of earthquake swarms is generally well understood. Because of the lack of descriptive empirical laws, the comparison with model simulations is typically restricted to aspects of the overall behaviour such as the frequency- magnitude distribution. However, previous investigations into a large earthquake swarm which occurred in the year 2000 in Vogtland/northwest Bohemia, Central Europe, revealed some well-defined characteristics which allow a rigorous test of model assumptions. In this study, simulations are performed of a discretized fault plane embedded in a 3-D elastic half- space. Earthquakes are triggered by fluid intrusion as well as by co-seismic and post-seismic stress changes. The model is able to reproduce the main observations, such as the fractal temporal occurrence of earthquakes, embedded aftershock sequences, and a power-law increase of the average seismic moment release. All these characteristics are found to result from stress triggering, whereas fluid diffusion is manifested in the spatiotemporal spreading of the hypocentresshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Sebastian HainzlORCiDGND
ISSN:0956-540X
Publication type:Article
Language:English
Year of first publication:2004
Publication year:2004
Release date:2017/03/24
Source:Geophysical Journal International. - ISSN 0956-540X. - 159 (2004), 3, S. 1090 - 1096
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Publishing method:Open Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.