• Treffer 1 von 1
Zurück zur Trefferliste

The in vivo mechanics of the magnetotactic backbone as revealed by correlative FLIM-FRET and STED microscopy

  • Protein interaction and protein imaging strongly benefit from the advancements in time-resolved and superresolution fluorescence microscopic techniques. However, the techniques were typically applied separately and ex vivo because of technical challenges and the absence of suitable fluorescent protein pairs. Here, we show correlative in vivo fluorescence lifetime imaging microscopy Forster resonance energy transfer (FLIM-FRET) and stimulated emission depletion (STED) microscopy to unravel protein mechanics and structure in living cells. We use magnetotactic bacteria as a model system where two proteins, MamJ and MamK, are used to assemble magnetic particles called magnetosomes. The filament polymerizes out of MamK and the magnetosomes are connected via the linker MamJ. Our system reveals that bacterial filamentous structures are more fragile than the connection of biomineralized particles to this filament. More importantly, we anticipate the technique to find wide applicability for the study and quantification of biological processesProtein interaction and protein imaging strongly benefit from the advancements in time-resolved and superresolution fluorescence microscopic techniques. However, the techniques were typically applied separately and ex vivo because of technical challenges and the absence of suitable fluorescent protein pairs. Here, we show correlative in vivo fluorescence lifetime imaging microscopy Forster resonance energy transfer (FLIM-FRET) and stimulated emission depletion (STED) microscopy to unravel protein mechanics and structure in living cells. We use magnetotactic bacteria as a model system where two proteins, MamJ and MamK, are used to assemble magnetic particles called magnetosomes. The filament polymerizes out of MamK and the magnetosomes are connected via the linker MamJ. Our system reveals that bacterial filamentous structures are more fragile than the connection of biomineralized particles to this filament. More importantly, we anticipate the technique to find wide applicability for the study and quantification of biological processes in living cells and at high resolution.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Erika Günther, André KlaußGND, Mauricio Toro-Nahuelpan, Dirk Schüler, Carsten HilleORCiDGND, Damien Faivre
DOI:https://doi.org/10.1038/s41598-019-55804-5
ISSN:2045-2322
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/31873083
Titel des übergeordneten Werks (Englisch):Scientific reports
Verlag:Nature Publ. Group
Verlagsort:London
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:23.12.2019
Erscheinungsjahr:2019
Datum der Freischaltung:15.06.2020
Band:9
Seitenanzahl:9
Fördernde Institution:Max Planck SocietyMax Planck SocietyFoundation CELLEX; Federal Ministry of Education and ResearchFederal Ministry of Education & Research (BMBF) [03IPT517Y]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer Review:Referiert
Publikationsweg:Open Access
Open Access / Gold Open-Access
DOAJ gelistet
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.