• search hit 1 of 1
Back to Result List

DNA capture reveals transoceanic gene flow in endangered river sharks

  • For over a hundred years, the "river sharks" of the genus Glyphis were only known from the type specimens of species that had been collected in the 19th century. They were widely considered extinct until populations of Glyphis-like sharks were rediscovered in remote regions of Borneo and Northern Australia at the end of the 20th century. However, the genetic affinities between the newly discovered Glyphis-like populations and the poorly preserved, original museum-type specimens have never been established. Here, we present the first (to our knowledge) fully resolved, complete phylogeny of Glyphis that includes both archival-type specimens and modern material. We used a sensitive DNA hybridization capture method to obtain complete mitochondrial genomes from all of our samples and show that three of the five described river shark species are probably conspecific and widely distributed in Southeast Asia. Furthermore we show that there has been recent gene flow between locations that are separated by large oceanic expanses. Our dataFor over a hundred years, the "river sharks" of the genus Glyphis were only known from the type specimens of species that had been collected in the 19th century. They were widely considered extinct until populations of Glyphis-like sharks were rediscovered in remote regions of Borneo and Northern Australia at the end of the 20th century. However, the genetic affinities between the newly discovered Glyphis-like populations and the poorly preserved, original museum-type specimens have never been established. Here, we present the first (to our knowledge) fully resolved, complete phylogeny of Glyphis that includes both archival-type specimens and modern material. We used a sensitive DNA hybridization capture method to obtain complete mitochondrial genomes from all of our samples and show that three of the five described river shark species are probably conspecific and widely distributed in Southeast Asia. Furthermore we show that there has been recent gene flow between locations that are separated by large oceanic expanses. Our data strongly suggest marine dispersal in these species, overturning the widely held notion that river sharks are restricted to freshwater. It seems that species in the genus Glyphis are euryhaline with an ecology similar to the bull shark, in which adult individuals live in the ocean while the young grow up in river habitats with reduced predation pressure. Finally, we discovered a previously unidentified species within the genus Glyphis that is deeply divergent from all other lineages, underscoring the current lack of knowledge about the biodiversity and ecology of these mysterious sharks.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Chenhong Li, Shannon Corrigan, Lei Yang, Nicolas Straube, Mark Harris, Michael HofreiterORCiDGND, William T. White, Gavin J. P. Naylor
DOI:https://doi.org/10.1073/pnas.1508735112
ISSN:0027-8424
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/26460025
Title of parent work (English):Proceedings of the National Academy of Sciences of the United States of America
Publisher:National Acad. of Sciences
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Tag:DNA; freshwater sharks; museum specimens
Volume:112
Issue:43
Number of pages:6
First page:13302
Last Page:13307
Funding institution:National Science Foundation Division of Environmental Biology Award [1132229]; Innovation Program of Shanghai Municipal Education Commission; Shanghai Pujiang Program; Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.