Refine
Year of publication
Document Type
Language
- English (114)
Is part of the Bibliography
- yes (114)
Keywords
- ancient DNA (29)
- palaeogenomics (7)
- phylogeny (6)
- admixture (5)
- mitochondrial genome (5)
- museum specimens (5)
- Ancient DNA (4)
- Genomics (4)
- Mitochondria (4)
- hybridization capture (4)
The great auk was once abundant and distributed across the North Atlantic. It is now extinct, having been heavily exploited for its eggs, meat, and feathers. We investigated the impact of human hunting on its demise by integrating genetic data, GPS-based ocean current data, and analyses of population viability. We sequenced complete mitochondrial genomes of 41 individuals from across the species' geographic range and reconstructed population structure and population dynamics throughout the Holocene. Taken together, our data do not provide any evidence that great auks were at risk of extinction prior to the onset of intensive human hunting in the early 16th century. In addition, our population viability analyses reveal that even if the great auk had not been under threat by environmental change, human hunting alone could have been sufficient to cause its extinction. Our results emphasise the vulnerability of even abundant and widespread species to intense and localised exploitation.
Taxonomy plays a central role in biological sciences. It provides a communication system for scientists as it aims to enable correct identification of the studied organisms. As a consequence, species descriptions should seek to include as much available information as possible at species level to follow an integrative concept of 'taxonomics'. Here, we describe the cryptic species Epimeria frankei sp. nov. from the North Sea, and also redescribe its sister species, Epimeria cornigera. The morphological information obtained is substantiated by DNA barcodes and complete nuclear 18S rRNA gene sequences. In addition, we provide, for the first time, full mitochondrial genome data as part of a metazoan species description for a holotype, as well as the neotype. This study represents the first successful implementation of the recently proposed concept of taxonomics, using data from high-throughput technologies for integrative taxonomic studies, allowing the highest level of confidence for both biodiversity and ecological research.
An ‛Aukward’ tale
(2017)
One hundred and seventy-three years ago, the last two Great Auks, Pinguinus impennis, ever reliably seen were killed. Their internal organs can be found in the collections of the Natural History Museum of Denmark, but the location of their skins has remained a mystery. In 1999, Great Auk expert Errol Fuller proposed a list of five potential candidate skins in museums around the world. Here we take a palaeogenomic approach to test which—if any—of Fuller’s candidate skins likely belong to either of the two birds. Using mitochondrial genomes from the five candidate birds (housed in museums in Bremen, Brussels, Kiel, Los Angeles, and Oldenburg) and the organs of the last two known individuals, we partially solve the mystery that has been on Great Auk scholars’ minds for generations and make new suggestions as to the whereabouts of the still-missing skin from these two birds.
Taxonomy plays a central role in biological sciences. It provides a communication system for scientists as it aims to enable correct identification of the studied organisms. As a consequence, species descriptions should seek to include as much available information as possible at species level to follow an integrative concept of 'taxonomics'. Here, we describe the cryptic species Epimeria frankei sp. nov. from the North Sea, and also redescribe its sister species, Epimeria cornigera. The morphological information obtained is substantiated by DNA barcodes and complete nuclear 18S rRNA gene sequences. In addition, we provide, for the first time, full mitochondrial genome data as part of a metazoan species description for a holotype, as well as the neotype. This study represents the first successful implementation of the recently proposed concept of taxonomics, using data from high-throughput technologies for integrative taxonomic studies, allowing the highest level of confidence for both biodiversity and ecological research.
Near the end of the Pleistocene epoch, populations of the woolly mammoth (Mammuthus primigenius) were distributed across parts of three continents, from western Europe and northern Asia through Beringia to the Atlantic seaboard of North America. Nonetheless, questions about the connectivity and temporal continuity of mammoth populations and species remain unanswered. We use a combination of targeted enrichment and high-throughput sequencing to assemble and interpret a data set of 143 mammoth mitochondrial genomes, sampled from fossils recovered from across their Holarctic range. Our dataset includes 54 previously unpublished mitochondrial genomes and significantly increases the coverage of the Eurasian range of the species. The resulting global phylogeny confirms that the Late Pleistocene mammoth population comprised three distinct mitochondrial lineages that began to diverge ~1.0–2.0 million years ago (Ma). We also find that mammoth mitochondrial lineages were strongly geographically partitioned throughout the Pleistocene. In combination, our genetic results and the pattern of morphological variation in time and space suggest that male-mediated gene flow, rather than large-scale dispersals, was important in the Pleistocene evolutionary history of mammoths.
For a long time, the analysis of ancient human DNA represented one of the most controversial disciplines in an already controversial field of research. Scepticism in this field was only matched by the long-lasting controversy over the authenticity of ancient pathogen DNA. This ambiguous view on ancient human DNA had a dichotomous root. On the one hand, the interest in ancient human DNA is great because such studies touch on the history and evolution of our own species. On the other hand, because these studies are dealing with samples from our own species, results are easily compromised by contamination of the experiments with modern human DNA, which is ubiquitous in the environment. Consequently, some of the most disputed studies published - apart maybe from early reports on million year old dinosaur or amber DNA - reported DNA analyses from human subfossil remains. However, the development of so-called next- or second-generation sequencing (SGS) in 2005 and the technological advances associated with it have generated new confidence in the genetic study of ancient human remains. The ability to sequence shorter DNA fragments than with PCR amplification coupled to traditional Sanger sequencing, along with very high sequencing throughput have both reduced the risk of sequencing modern contamination and provided tools to evaluate the authenticity of DNA sequence data. The field is now rapidly developing, providing unprecedented insights into the evolution of our own species and past human population dynamics as well as the evolution and history of human pathogens and epidemics. Here, we review how recent technological improvements have rapidly transformed ancient human DNA research from a highly controversial subject to a central component of modern anthropological research. We also discuss potential future directions of ancient human DNA research.
The bat-eared fox, Otocyon megalotis, is the only member of its genus and is thought to occupy a basal position within the dog family. These factors can lead to challenges in complete mitochondrial reconstructions and accurate phylogenetic positioning. Here, we present the first complete mitochondrial genome of the bat-eared fox recovered using shotgun sequencing and iterative mapping to three distantly related species. Phylogenetic analyses placed the bat-eared fox basal in the Canidae family within the clade including true foxes (Vulpes) and the raccoon dog (Nyctereutes) with high support values. This position is in good agreement with previously published results based on short fragments of mitochondrial and nuclear genes, therefore adding more support to the basal positioning of the bat-eared fox within Canidae.
The unusual mix of morphological traits displayed by extinct South American native ungulates (SANUs) confounded both Charles Darwin, who first discovered them, and Richard Owen, who tried to resolve their relationships. Here we report an almost complete mitochondrial genome for the litoptern Macrauchenia. Our dated phylogenetic tree places Macrauchenia as sister to Perissodactyla, but close to the radiation of major lineages within Laurasiatheria. This position is consistent with a divergence estimate of B66Ma (95% credibility interval, 56.64-77.83 Ma) obtained for the split between Macrauchenia and other Panperissodactyla. Combined with their morphological distinctiveness, this evidence supports the positioning of Litopterna (possibly in company with other SANU groups) as a separate order within Laurasiatheria. We also show that, when using strict criteria, extinct taxa marked by deep divergence times and a lack of close living relatives may still be amenable to palaeogenomic analysis through iterative mapping against more distant relatives.
Saber-toothed cats (Machairodontinae) are among the most widely recognized representatives of the now largely extinct Pleistocene megafauna. However, many aspects of their ecology, evolution, and extinction remain uncertain. Although ancient-DNA studies have led to huge advances in our knowledge of these aspects of many other megafauna species (e.g., mammoths and cave bears), relatively few ancient-DNA studies have focused on saber-toothed cats [1-3], and they have been restricted to short fragments of mitochondrial DNA. Here we investigate the evolutionary history of two lineages of saber-toothed cats (Smilodon and Homotherium) in relation to living carnivores and find that the Machairodontinae form a well-supported clade that is distinct from all living felids. We present partial mitochondrial genomes from one S. populator sample and three Homotherium sp. samples, including the only Late Pleistocene Homotherium sample from Eurasia [4]. We confirm the identification of the unique Late Pleistocene European fossil through ancient-DNA analyses, thus strengthening the evidence that Homotherium occurred in Europe over 200,000 years later than previously believed. This in turn forces a re-evaluation of its demography and extinction dynamics. Within the Machairodontinae, we find a deep divergence between Smilodon and Homotherium (similar to 18 million years) but limited diversity between the American and European Homotherium specimens. The genetic data support the hypothesis that all Late Pleistocene (or post-Villafrancian) Homotherium should be considered a single species, H. latidens, which was previously proposed based on morphological data [5, 6].
The unusual mix of morphological traits displayed by extinct South American native ungulates (SANUs) confounded both Charles Darwin, who first discovered them, and Richard Owen, who tried to resolve their relationships. Here we report an almost complete mitochondrial genome for the litoptern Macrauchenia. Our dated phylogenetic tree places Macrauchenia as sister to Perissodactyla, but close to the radiation of major lineages within Laurasiatheria. This position is consistent with a divergence estimate of B66Ma (95% credibility interval, 56.64-77.83 Ma) obtained for the split between Macrauchenia and other Panperissodactyla. Combined with their morphological distinctiveness, this evidence supports the positioning of Litopterna (possibly in company with other SANU groups) as a separate order within Laurasiatheria. We also show that, when using strict criteria, extinct taxa marked by deep divergence times and a lack of close living relatives may still be amenable to palaeogenomic analysis through iterative mapping against more distant relatives.