• Treffer 25 von 39
Zurück zur Trefferliste

On the balance between plasma and magnetic pressure across equatorial plasma depletions

  • In magnetized plasmas such as the ionosphere, electric currents develop in regions of strong density gradients to balance the resulting plasma pressure gradients. These currents, usually known as diamagnetic currents decrease the magnetic pressure where the plasma pressure increases, and vice versa. In the low‐latitude ionosphere, equatorial plasma depletions (EPDs) are well known for their steep plasma density gradients and adverse effect on radio wave propagation. In this paper, we use continuous measurements of the magnetic field and electron density from the European Space Agency's Swarm constellation mission to assess the balance between plasma and magnetic pressure across large‐scale EPDs. The analysis is based on the magnetic fluctuations related to diamagnetic currents flowing at the edges of EPDs. This study shows that most of the EPDs detected by Swarm present a decrease of the plasma pressure relative to the ambient plasma. However, EPDs with high plasma pressure are also identified mainly in the vicinity of the SouthIn magnetized plasmas such as the ionosphere, electric currents develop in regions of strong density gradients to balance the resulting plasma pressure gradients. These currents, usually known as diamagnetic currents decrease the magnetic pressure where the plasma pressure increases, and vice versa. In the low‐latitude ionosphere, equatorial plasma depletions (EPDs) are well known for their steep plasma density gradients and adverse effect on radio wave propagation. In this paper, we use continuous measurements of the magnetic field and electron density from the European Space Agency's Swarm constellation mission to assess the balance between plasma and magnetic pressure across large‐scale EPDs. The analysis is based on the magnetic fluctuations related to diamagnetic currents flowing at the edges of EPDs. This study shows that most of the EPDs detected by Swarm present a decrease of the plasma pressure relative to the ambient plasma. However, EPDs with high plasma pressure are also identified mainly in the vicinity of the South Atlantic magnetic anomaly. From the electron density measurements, we deduce that such an increase in plasma pressure within EPDs might be possible by temperatures inside the EPD as high as twice the temperature of the ambient plasma. Due to the distinct location of the high‐pressure EPDs, we suggest that a possible heating mechanism might be due to precipitation of particle from the radiation belts. This finding corresponds to the first observational evidence of plasma pressure enhancements in regions of depleted plasma density in the ionosphere.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Juan Rodriguez-ZuluagaORCiDGND, Claudia StolleORCiDGND, Yosuke YamazakiORCiD, H. Lühr, J. ParkORCiD, L. ScherliessORCiD, J. L. ChauORCiD
DOI:https://doi.org/10.1029/2019JA026700
ISSN:2169-9402
Titel des übergeordneten Werks (Englisch):Journal of geophysical research : Space physics
Verlag:American Geophysical Union
Verlagsort:Washington
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:25.06.2019
Erscheinungsjahr:2019
Datum der Freischaltung:12.01.2021
Freies Schlagwort / Tag:diamagnetic currents; equatorial plasma depletions; magnetic pressure; plasma pressure; spread F
Band:124
Ausgabe:7
Seitenanzahl:9
Erste Seite:5936
Letzte Seite:5944
Fördernde Institution:German Research Foundation (DFG)German Research Foundation (DFG) [(SPP) 1788]; Humboldt Research Fellowship for Experienced Researchers from the Alexander von Humboldt FoundationAlexander von Humboldt Foundation; DFGGerman Research Foundation (DFG) [SPP 1788, CH 1482/1-1]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer Review:Referiert
Publikationsweg:Open Access / Green Open-Access
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.