• search hit 18 of 216
Back to Result List

Self-supervised deep learning methods for medical image analysis

Selbstüberwachte Deep Learning Methoden für die medizinische Bildanalyse

  • Deep learning has seen widespread application in many domains, mainly for its ability to learn data representations from raw input data. Nevertheless, its success has so far been coupled with the availability of large annotated (labelled) datasets. This is a requirement that is difficult to fulfil in several domains, such as in medical imaging. Annotation costs form a barrier in extending deep learning to clinically-relevant use cases. The labels associated with medical images are scarce, since the generation of expert annotations of multimodal patient data at scale is non-trivial, expensive, and time-consuming. This substantiates the need for algorithms that learn from the increasing amounts of unlabeled data. Self-supervised representation learning algorithms offer a pertinent solution, as they allow solving real-world (downstream) deep learning tasks with fewer annotations. Self-supervised approaches leverage unlabeled samples to acquire generic features about different concepts, enabling annotation-efficient downstream taskDeep learning has seen widespread application in many domains, mainly for its ability to learn data representations from raw input data. Nevertheless, its success has so far been coupled with the availability of large annotated (labelled) datasets. This is a requirement that is difficult to fulfil in several domains, such as in medical imaging. Annotation costs form a barrier in extending deep learning to clinically-relevant use cases. The labels associated with medical images are scarce, since the generation of expert annotations of multimodal patient data at scale is non-trivial, expensive, and time-consuming. This substantiates the need for algorithms that learn from the increasing amounts of unlabeled data. Self-supervised representation learning algorithms offer a pertinent solution, as they allow solving real-world (downstream) deep learning tasks with fewer annotations. Self-supervised approaches leverage unlabeled samples to acquire generic features about different concepts, enabling annotation-efficient downstream task solving subsequently. Nevertheless, medical images present multiple unique and inherent challenges for existing self-supervised learning approaches, which we seek to address in this thesis: (i) medical images are multimodal, and their multiple modalities are heterogeneous in nature and imbalanced in quantities, e.g. MRI and CT; (ii) medical scans are multi-dimensional, often in 3D instead of 2D; (iii) disease patterns in medical scans are numerous and their incidence exhibits a long-tail distribution, so it is oftentimes essential to fuse knowledge from different data modalities, e.g. genomics or clinical data, to capture disease traits more comprehensively; (iv) Medical scans usually exhibit more uniform color density distributions, e.g. in dental X-Rays, than natural images. Our proposed self-supervised methods meet these challenges, besides significantly reducing the amounts of required annotations. We evaluate our self-supervised methods on a wide array of medical imaging applications and tasks. Our experimental results demonstrate the obtained gains in both annotation-efficiency and performance; our proposed methods outperform many approaches from related literature. Additionally, in case of fusion with genetic modalities, our methods also allow for cross-modal interpretability. In this thesis, not only we show that self-supervised learning is capable of mitigating manual annotation costs, but also our proposed solutions demonstrate how to better utilize it in the medical imaging domain. Progress in self-supervised learning has the potential to extend deep learning algorithms application to clinical scenarios.show moreshow less
  • Deep Learning findet in vielen Bereichen breite Anwendung, vor allem wegen seiner Fähigkeit, Datenrepräsentationen aus rohen Eingabedaten zu lernen. Dennoch war der Erfolg bisher an die Verfügbarkeit großer annotatierter Datensätze geknüpft. Dies ist eine Anforderung, die in verschiedenen Bereichen, z. B. in der medizinischen Bildgebung, schwer zu erfüllen ist. Die Kosten für die Annotation stellen ein Hindernis für die Ausweitung des Deep Learning auf klinisch relevante Anwendungsfälle dar. Die mit medizinischen Bildern verbundenen Annotationen sind rar, da die Erstellung von Experten Annotationen für multimodale Patientendaten in großem Umfang nicht trivial, teuer und zeitaufwändig ist. Dies unterstreicht den Bedarf an Algorithmen, die aus den wachsenden Mengen an unbeschrifteten Daten lernen. Selbstüberwachte Algorithmen für das Repräsentationslernen bieten eine mögliche Lösung, da sie die Lösung realer (nachgelagerter) Deep-Learning-Aufgaben mit weniger Annotationen ermöglichen. Selbstüberwachte Ansätze nutzen unannotierteDeep Learning findet in vielen Bereichen breite Anwendung, vor allem wegen seiner Fähigkeit, Datenrepräsentationen aus rohen Eingabedaten zu lernen. Dennoch war der Erfolg bisher an die Verfügbarkeit großer annotatierter Datensätze geknüpft. Dies ist eine Anforderung, die in verschiedenen Bereichen, z. B. in der medizinischen Bildgebung, schwer zu erfüllen ist. Die Kosten für die Annotation stellen ein Hindernis für die Ausweitung des Deep Learning auf klinisch relevante Anwendungsfälle dar. Die mit medizinischen Bildern verbundenen Annotationen sind rar, da die Erstellung von Experten Annotationen für multimodale Patientendaten in großem Umfang nicht trivial, teuer und zeitaufwändig ist. Dies unterstreicht den Bedarf an Algorithmen, die aus den wachsenden Mengen an unbeschrifteten Daten lernen. Selbstüberwachte Algorithmen für das Repräsentationslernen bieten eine mögliche Lösung, da sie die Lösung realer (nachgelagerter) Deep-Learning-Aufgaben mit weniger Annotationen ermöglichen. Selbstüberwachte Ansätze nutzen unannotierte Stichproben, um generisches Eigenschaften über verschiedene Konzepte zu erlangen und ermöglichen so eine annotationseffiziente Lösung nachgelagerter Aufgaben. Medizinische Bilder stellen mehrere einzigartige und inhärente Herausforderungen für existierende selbstüberwachte Lernansätze dar, die wir in dieser Arbeit angehen wollen: (i) medizinische Bilder sind multimodal, und ihre verschiedenen Modalitäten sind von Natur aus heterogen und in ihren Mengen unausgewogen, z.B. (ii) medizinische Scans sind mehrdimensional, oft in 3D statt in 2D; (iii) Krankheitsmuster in medizinischen Scans sind zahlreich und ihre Häufigkeit weist eine Long-Tail-Verteilung auf, so dass es oft unerlässlich ist, Wissen aus verschiedenen Datenmodalitäten, z. B. Genomik oder klinische Daten, zu verschmelzen, um Krankheitsmerkmale umfassender zu erfassen; (iv) medizinische Scans weisen in der Regel eine gleichmäßigere Farbdichteverteilung auf, z. B. in zahnmedizinischen Röntgenaufnahmen, als natürliche Bilder. Die von uns vorgeschlagenen selbstüberwachten Methoden adressieren diese Herausforderungen und reduzieren zudem die Menge der erforderlichen Annotationen erheblich. Wir evaluieren unsere selbstüberwachten Methoden in verschiedenen Anwendungen und Aufgaben der medizinischen Bildgebung. Unsere experimentellen Ergebnisse zeigen, dass die von uns vorgeschlagenen Methoden sowohl die Effizienz der Annotation als auch die Leistung steigern und viele Ansätze aus der verwandten Literatur übertreffen. Darüber hinaus ermöglichen unsere Methoden im Falle der Fusion mit genetischen Modalitäten auch eine modalübergreifende Interpretierbarkeit. In dieser Arbeit zeigen wir nicht nur, dass selbstüberwachtes Lernen in der Lage ist, die Kosten für manuelle Annotationen zu senken, sondern auch, wie man es in der medizinischen Bildgebung besser nutzen kann. Fortschritte beim selbstüberwachten Lernen haben das Potenzial, die Anwendung von Deep-Learning-Algorithmen auf klinische Szenarien auszuweiten.show moreshow less

Download full text files

  • SHA-512:5851f837feb8fd22f9dbcee399446be25c3b47b3e788f4ab8b9bd4e65384a1b47bf8f3c0d5e6d7a863200f588b90ab3602711109af9b7917fce2b6c93cfdfd3e

Export metadata

Metadaten
Author details:Aiham TalebORCiD
URN:urn:nbn:de:kobv:517-opus4-644089
DOI:https://doi.org/10.25932/publishup-64408
Reviewer(s):Gerard de MeloORCiDGND, Shadi AlbarqouniORCiDGND
Supervisor(s):Christoph Lippert
Publication type:Doctoral Thesis
Language:English
Publication year:2024
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2024/04/24
Release date:2024/07/02
Tag:Künstliche Intelligenz; Representationlernen; maschinelles Lernen; selbstüberwachtes Lernen
Artificial Intelligence; machine learning; representation learning; unsupervised learning
Number of pages:xii, 171
Organizational units:Digital Engineering Fakultät / Hasso-Plattner-Institut für Digital Engineering GmbH
CCS classification:I. Computing Methodologies / I.2 ARTIFICIAL INTELLIGENCE / I.2.6 Learning (K.3.2)
DDC classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
MSC classification:68-XX COMPUTER SCIENCE (For papers involving machine computations and programs in a specific mathematical area, see Section {04 in that areag 68-00 General reference works (handbooks, dictionaries, bibliographies, etc.) / 68Txx Artificial intelligence
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.