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0Abstract
Deep learning has seen widespread application in many domains, mainly for its

ability to learn data representations from raw input data. Nevertheless, its success

has so far been coupled with the availability of large annotated (labelled) datasets.

This is a requirement that is difficult to fulfil in several domains, such as in medical

imaging. Annotation costs form a barrier in extending deep learning to clinically-

relevant use cases. The labels associated with medical images are scarce, since the

generation of expert annotations of multimodal patient data at scale is non-trivial,

expensive, and time-consuming. This substantiates the need for algorithms that

learn from the increasing amounts of unlabeled data. Self-supervised representation

learning algorithms offer a pertinent solution, as they allow solving real-world

(downstream) deep learning tasks with fewer annotations. Self-supervised ap-

proaches leverage unlabeled samples to acquire generic features about different

concepts, enabling annotation-efficient downstream task solving subsequently.

Nevertheless, medical images present multiple unique and inherent challenges for

existing self-supervised learning approaches, which we seek to address in this thesis:

(i) medical images are multimodal, and their multiple modalities are heterogeneous

in nature and imbalanced in quantities, e.g. MRI and CT; (ii) medical scans are

multi-dimensional, often in 3D instead of 2D; (iii) disease patterns in medical scans

are numerous and their incidence exhibits a long-tail distribution, so it is oftentimes

essential to fuse knowledge from different data modalities, e.g. genomics or clinical

data, to capture disease traits more comprehensively; (iv) Medical scans usually

exhibit more uniform color density distributions, e.g. in dental X-Rays, than natural

images. Our proposed self-supervised methods meet these challenges, besides

significantly reducing the amounts of required annotations.

We evaluate our self-supervised methods on a wide array of medical imaging

applications and tasks. Our experimental results demonstrate the obtained gains in

both annotation-efficiency and performance; our proposed methods outperform

many approaches from related literature. Additionally, in case of fusion with genetic

modalities, our methods also allow for cross-modal interpretability. In this thesis,

not only we show that self-supervised learning is capable of mitigating manual

annotation costs, but also our proposed solutions demonstrate how to better utilize

it in the medical imaging domain. Progress in self-supervised learning has the

potential to extend deep learning algorithms application to clinical scenarios.
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0Zusammenfassung

Deep Learning findet in vielen Bereichen breite Anwendung, vor allemwegen seiner

Fähigkeit, Datenrepräsentationen aus rohen Eingabedaten zu lernen. Dennoch war

der Erfolg bisher an die Verfügbarkeit großer annotatierter Datensätze geknüpft.

Dies ist eine Anforderung, die in verschiedenen Bereichen, z. B. in der medizinischen

Bildgebung, schwer zu erfüllen ist. Die Kosten für die Annotation stellen ein Hinder-

nis für die Ausweitung des Deep Learning auf klinisch relevante Anwendungsfälle

dar. Die mit medizinischen Bildern verbundenen Annotationen sind rar, da die

Erstellung von Experten Annotationen für multimodale Patientendaten in großem

Umfang nicht trivial, teuer und zeitaufwändig ist. Dies unterstreicht den Bedarf an

Algorithmen, die aus den wachsenden Mengen an unbeschrifteten Daten lernen.

Selbstüberwachte Algorithmen für das Repräsentationslernen bieten eine mögliche

Lösung, da sie die Lösung realer (nachgelagerter) Deep-Learning-Aufgaben mit

weniger Annotationen ermöglichen. Selbstüberwachte Ansätze nutzen unanno-

tierte Stichproben, um generisches Eigenschaften über verschiedene Konzepte zu

erlangen und ermöglichen so eine annotationseffiziente Lösung nachgelagerter

Aufgaben.

Medizinische Bilder stellen mehrere einzigartige und inhärente Herausforderun-

gen für existierende selbstüberwachte Lernansätze dar, die wir in dieser Arbeit

angehen wollen: (i) medizinische Bilder sind multimodal, und ihre verschiedenen

Modalitäten sind von Natur aus heterogen und in ihren Mengen unausgewogen, z.

B. (ii) medizinische Scans sind mehrdimensional, oft in 3D statt in 2D; (iii) Krank-

heitsmuster in medizinischen Scans sind zahlreich und ihre Häufigkeit weist eine

Long-Tail-Verteilung auf, so dass es oft unerlässlich ist, Wissen aus verschiede-

nen Datenmodalitäten, z. B. Genomik oder klinische Daten, zu verschmelzen, um

Krankheitsmerkmale umfassender zu erfassen; (iv) medizinische Scans weisen in

der Regel eine gleichmäßigere Farbdichteverteilung auf, z. B. in zahnmedizinischen

Röntgenaufnahmen, als natürliche Bilder. Die von uns vorgeschlagenen selbstüber-

wachten Methoden adressieren diese Herausforderungen und reduzieren zudem

die Menge der erforderlichen Annotationen erheblich.

Wir evaluieren unsere selbstüberwachten Methoden in verschiedenen Anwen-

dungen und Aufgaben der medizinischen Bildgebung. Unsere experimentellen

Ergebnisse zeigen, dass die von uns vorgeschlagenen Methoden sowohl die Ef-

fizienz der Annotation als auch die Leistung steigern und viele Ansätze aus der
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verwandten Literatur übertreffen. Darüber hinaus ermöglichen unsere Methoden

im Falle der Fusion mit genetischen Modalitäten auch eine modalübergreifende

Interpretierbarkeit. In dieser Arbeit zeigen wir nicht nur, dass selbstüberwachtes

Lernen in der Lage ist, die Kosten für manuelle Annotationen zu senken, sondern

auch, wie man es in der medizinischen Bildgebung besser nutzen kann. Fortschritte

beim selbstüberwachten Lernen haben das Potenzial, die Anwendung von Deep-

Learning-Algorithmen auf klinische Szenarien auszuweiten.
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1 Introduction

1.1 Motivation
Medical imaging plays a vital role in patient healthcare, as it aids in disease preven-

tion, early detection, diagnosis, and treatment. As a consequence, unprecedented

amounts of medical scans are being conducted on a daily basis. According to the

World Health Organization (WHO), an estimated 3.6 billion diagnostic examina-

tions are performed annually across the globe [bus; Org], and these estimations

include only most commonly used types of medical imaging modalities. The rapidly

rising numbers of imaging studies create a natural workload on human radiologists,

justifying the increasing adoption of computer-aided diagnosis (CAD) and detection

systems [Doi07]. The latter systems, in turn, can benefit significantly from recent

advancements in deep learning methods and the growing evidence of its ability to

improve performance on medical imaging applications [AMZ21; Ker+17; Kim+19b;

Ma+20].

Nevertheless, machine learning, especially deep learning algorithms, are inher-

ently data hungry, requiring sufficiently large annotated datasets to extract relevant

information and learn rich data representations. Several studies show that deep

learning methods require large amounts of annotated samples in order to match

human diagnostic performance [Ard+19; Est+17; Gul+16; McK+20]. Subsequently,

efforts to employ deep learning algorithms to support in clinical settings are often

hampered by the high costs of required expert annotations. Generating expert anno-

tations of medical imaging data at scale is non-trivial, expensive, time-consuming,

and is associated with risks in privacy leakages. Even semi-automatic software tools

may fail to sufficiently reduce annotation expenses [Grü+17]. Consequently, manual

annotation of medical images is the main impediment in translating advancements

in deep learning methods into clinically useful computer-aided diagnosis (CAD)

systems. It is necessary therefore to find solutions for the aforementioned challenge.

1.2 Approach and Contributions
The lack of annotations is also common in other application fields of deep learning.

One widely used technique to address this challenge is transfer learning, which
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Chapter 1 Introduction

aims to reuse the features of trained neural networks on different, yet related, target

tasks, such as adapting the features of networks trained on ImageNet [Den+09] into

other visual tasks. To some extent, transfer learning has improved the performance

on tasks with limited numbers of samples. However, despite several attempts to

leverage ImageNet features in the medical imaging domain [IHA18; Raj+17; Sah+19;

Wan+17], the difference in the distributions of natural and medical images seems

significant. In other words, generalizing across these domains is questionable

and can suffer from dataset bias [TE11]. A recent analysis [Rag+19] has also

found that such transfer learning offers limited performance gains, relative to the

computational costs it incurs.

All the above reasons, such as the ever-increasing quantities of medical scans,

the large costs incurred in their annotation process, and the challenges in trans-

fer learning models pretrained on different imaging domains, paint unsupervised

(self-supervised) representation learning as a pertinent solution. Self-supervised

approaches leverage unlabeled samples to acquire generic knowledge about differ-

ent concepts, subsequently enabling annotation-efficient downstream task solving.

In other words, pretrained models with self-supervised methods can be transferred

(or fine-tuned) into downstream tasks, such as semantic segmentation, and they re-

quire fewer annotations therein. Nonetheless, the medical imaging domain presents

several unique and inherent challenges when extending self-supervised learning

approaches, which we seek to address in this thesis with our proposed methods.

First, medical images are multimodal, e.g. MRI and CT, and their multiple modali-

ties are heterogeneous in nature and their quantities are imbalanced. Our proposed

methods in chapter 3 aim to meet this challenge and utilize the multimodality

property of medical scans. Second, medical scans are often multi-dimensional,

such as in 3D instead of 2D, deeming designing self-supervised tasks for 3D spatial

context a necessity. We show in chapter 4 that employing this property can improve

downstream performance. Third, disease patterns in medical images are numerous

and their incidence exhibits a long tail distribution, resulting in models biased to-

wards the more prevalent disease traits. It is therefore essential to fuse knowledge

from additional data modalities, e.g. genomics or clinical data, to capture rare dis-

ease traits more comprehensively. We show in chapter 5 that integrating genomic

modalities with medical scans in the self-supervised stage can both improve down-

stream performance and achieve cross-modal explainability as a key byproduct.

Finally, medical scans exhibit a more uniform nature than natural images, such as

in color density distributions. chapter 6 illustrates how to take advantage of such

domain knowledge in improving adoption of existing self-supervised methods in

the medical imaging domain. Our proposed self-supervised methods meet these

challenges, besides significantly reducing the quantities of required annotations.

2



List of published works and own contributions Section 1.3

1.3 List of published works and own contributions
Some extracts from this thesis appear in the following co-authored publications

and preprints.

chapter 3 extends work from:

• Aiham Taleb, Christoph Lippert, Tassilo Klein, and Moin Nabi. "Multimodal

self-supervised learning for medical image analysis." In International Con-
ference on Information Processing in Medical Imaging, pp. 661-673. Springer,
Cham, 2021.

Own contributions in the above publication include source code implementa-

tion of the self-supervised multimodal puzzle solving algorithm, of subsequent

downstream tasks (Brain Tumor segmentation, Prostate segmentation, Liver seg-

mentation, and survival days prediction), and of the cross-modal generation task.

This also includes all related evaluation scripts for trained models in terms of per-

formance and annotation-efficiency. The writing of the manuscript is also an own

contribution, including all sections and compilation and analysis of results.

chapter 4 is adapted from:

• Aiham Taleb, Winfried Loetzsch, Noel Danz, Julius Severin, Thomas Gaertner,

Benjamin Bergner, and Christoph Lippert. "3d self-supervised methods for

medical imaging."Advances in Neural Information Processing Systems 33 (2020):
18158-18172.

• Yamen Ali, Aiham Taleb, Marina M-C. Höhne, and Christoph Lippert. "Self-

Supervised Learning for 3D Medical Image Analysis using 3D SimCLR and

Monte Carlo Dropout." arXiv preprint arXiv:2109.14288 (2021).

Own contributions in the first publication include source code implementation

of the first version of five self-supervised algorithms and of the downstream task

of Brain Tumor segmentation. This includes related evaluation scripts for trained

models in terms of performance and annotation-efficiency. For the second version

of algorithm implementations, own contributions included continuous supervision

and review of developed source code. The writing of the complete manuscript is

also an own contribution, including all sections and compilation and analysis of

results. In the second preprint, own contributions included continuous supervision

and review of developed source code as well as writing of the manuscript.

chapter 5 contains work from:

• Aiham Taleb, Matthias Kirchler, RemoMonti, and Christoph Lippert. "ContIG:

Self-supervised Multimodal Contrastive Learning for Medical Imaging with
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Genetics." In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 20908-20921. 2022.

Own contributions in the above publication include source code implementation

of the self-supervised multimodal contrastive loss and of the downstream tasks

(Diabetic retinopathy classifiction, Pathological Myopia Segmentation, Retinal

Fundus Disease Classification, and Cardiovascular Risk Prediction). This also

includes related evaluation scripts for trained models in terms of performance and

annotation-efficiency. Writing of manuscript sections and compilation and analysis

of results is also a contribution.

And finally, chapter 6 is adapted from:

• Aiham Taleb, Csaba Rohrer, Benjamin Bergner, Guilherme De Leon, Jonas
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"Self-Supervised Learning Methods for Label-Efficient Dental Caries Classifi-
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Own contributions in the above publication include source code implementation
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Dental Caries classification. This includes all related evaluation scripts for trained

models in terms of performance and annotation-efficiency. The writing of the

manuscript is also an own contribution, across all sections and compilation and

analysis of results.

1.4 Thesis Structure
The thesis is outlined as follows. We first start with background information in

chapter 2, which includes the necessary definitions and literature reviews on which

our contributions in subsequent chapters are built upon. Our proposed novel self-

supervised algorithms are then detailed in the following order: chapter 3 concerns

learning from multiple modalities of medical images, chapter 4 covers learning

from 3D medical scans, chapter 5 is about integrating medical images with genetic

modalities, and chapter 6 deals with the homogeneous nature of medical images.

In each chapter, we review the most relevant prior art, we provide the detailed

formulations for our proposed algorithms and employed deep learning architectures.

Finally, in chapter 7, we make our overall conclusions, we discuss our findings and

limitations, and we suggest directions for future research.
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2 Background and Related Work

In this chapter, we define some requisite concepts, which are used throughout this

thesis. Additionally, we review relevant articles from the literature and provide a

view on the state-of-the-art in the related domains.

2.1 Definitions

2.1.1 Representation
What is a Representation?

Humans have attempted for centuries to describe how our minds perceive the world

around us. Philosophers, for instance, attempted to describe what exactly humans

do with visual information sensed by our eyes. The doctrine of Representationalism

(or Indirect Realism), in particular, holds the view that the world we see in conscious

experience is not the real world itself, butmerely a replica of that world in an internal

representation [phi]. In other words, the immediate object of knowledge is an idea

in the mind distinct from the external object [mer]. Immanuel Kant is viewed as

a representationalist by A. B. Dickerson in his book "Kant on Representation and

Objectivity" [Dic03], in which Kant’s definition of the representation is:

Representations are the immediate objects of our awareness. However,

we cognize objects like trees neither by inferring those objects as the

causes of representations nor by constructing them out of representa-

tions. Rather, via what Kant calls apperception we are made aware of

the object cognized “in” the representation, just as we see a face “in”

the lines of a picture. That object is distinct from the matter of the

representation, just as the face is distinct from the lines themselves.

Another philosopher, David Hume wrote in his "Treatise of Human Nature" in

1740 [Hum03]:

When I shutmy eyes and think ofmy chamber, the ideas I form are exact

representations of the impressions I felt; nor is there any circumstance

of the one, which is not to be found in the other. In running over my
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other perceptions, I find still the same resemblance and representation.

Ideas and impressions appear always to correspond to each other. . . . I

observe, that many of our complex ideas never had impressions, that

corresponded to them, and that many of our complex impressions never

are exactly copied in ideas. . . . I have seen Paris; but shall I affirm I can

form such an idea of that city, as will perfectly represent all its streets

and houses in their real and just proportions? . . .The qualities, from

which this association arises, and bywhich themind is after this manner

conveyed from one idea to another, are three, viz. RESEMBLANCE,

CONTIGUITY in time or place, and CAUSE and EFFECT. I believe it

will not be very necessary to prove, that these qualities produce an

association among ideas, and upon the appearance of one idea naturally

introduce another.

In the passage above, Hume uses impressions to refer roughly to sensory informa-

tion, and the representations (ideas) which correspond to the external objects exist

purely in the mind. To Hume, such ideas persist in the mind even after the eyes

are closed. Hume attempts to explain what is contained in these representations,

and it seems that they are not mere copies of the visual world, rather transformed

versions of it. Hume uses the example of Paris, where one may be able to find

common elements that unite its architecture, even if they are not identical. Hume

argues that the purpose of these representations or ideas is that they enable us to

form associations. For example, it is completely possible to recognize if a building,

unseen by us before, uses the architectural style of Paris. Hence, such associations

are necessary to fetch the relevant past memories, and are likely maintained in our

mind’s representations of the world. In addition, Hume supposes here that a high

quality representation resembles (is similar to) the different objects we see.

The above definition of the representation in the context of philosophy is a fairly

accurate description of its usage in the context of Machine Learning. The term

"features" is also alternatively used in this context. Similarly to the definitions

above, the "features" or "representations" should resemble the world objects and

scenes. In addition, such representations should be persisted in Machine Learning

models. Such models should also be able to find associations between unseen object

instances to those that exist in the persisted representations. As we will see in

next sections, Machine Learning techniques, in general, and Deep Learning, in

particular, aim to learn and persist the most relevant features and representations

about the input data. Imitating the perception and cognition processes performed

by our minds.
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Representation Learning

Normally, a Machine Learning (ML) model’s purpose is to perform a specific task,

or sometimes multiple tasks. Such tasks, e.g. classification, rely on the quality of

the data representations being used in this task [GBC16]. Generally, the better

the data representations, the higher the efficiency of such tasks. In other words,

better data representations would make the task easier. An essential question that

arises here, which concerns the comparability of representations: what makes one

representation better than another [BCV12]? A commonly used answer is that a

good data representation is one that captures the underlying factors of variation

relevant to the task, and discards the less relevant. Such factors of variation differ

across the tasks, e.g. when analyzing an image of a car these factors may include

the position of the car, its color, and the reflection of the sun light on it [GBC16].

Another example is the speaker accent in a speech analysis system.

Early attempts to extract the relevant factors of variation from the data relied

on hand-crafted, or engineered, features, e.g. HOG [DT05] in visual inputs. Subse-

quently, these features are fed into the ML models to perform the actual tasks, e.g.

train a classifier. Not only these engineered features required extensive understand-

ing of the application domains, but also they failed to achieve satisfactory results in

many tasks, particularly on large visual datasets [Ant+15a; KSH12]. On the other

hand, the recent paradigm shift with Deep Learning (DL) algorithms, allowed the

model to determine, or learn, which features are most relevant to optimize the task

being solved. In other words, DL algorithms extract the important features from

the data and store them as representations. DL attempts to mimic how the human

brain extracts and persists representations of the world [CD14; Has+17]. Overall,

uncovering the relevant factors of variation can be challenging, and deep learning

addresses this problem by expressing complex data representations in terms of

simpler representations. We briefly explain some DL concepts in the next Section.

Learning a good representation entails priors (clues) about the data domains to

guide the model in attempting to uncover the useful factors of variation. Supervised

learning approaches make use of strong clues in the form of labels (annotations)

for input data samples. Typically these labels specify at least one factor of varia-

tion directly. Supervised learning proved to learn good representations [KSH12]

from the data [Den+09], and these representations have been repurposed to other

tasks [Gir+13]. This comes at the expense of requiring massive amounts of la-

bels [Den+09]. In Unsupervised learning, on the other hand, less direct clues, about

the variation factors, are usually used in order to learn more abstract representa-

tions of the world. This allows for exploiting the large quantities of unlabelled data

samples, and hence reducing the numbers of required labels [DGE15]. Unsuper-
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vised representation learning has the potential to learn good data representations

while reducing human-expert annotation efforts at the same time, as we will see in

subsequent Chapters.

2.1.2 Deep Learning
In order to better understand deep learning models, we will begin with simple

linear regression [Gau09; PLA72]. Note that the examples used below are adapted

from [Bis06; Gal16]. Given a set of𝑁 input-outputmapping pairs {(𝑥1, 𝑦1), ..., (𝑥𝑁 , 𝑦𝑁 )},
e.g. house prices in relation to square areas. Now, we assume a linear function that

connects each house area in square meters 𝑥𝑖 ∈ 𝑅𝐿 to the house price 𝑦𝑖 ∈ 𝑅𝑀 . The
model thereby is defined as a linear transformation of the inputs 𝑓 (𝑥) = (𝑥𝑊 + 𝑏),
with𝑊 as an 𝐿 ×𝑀 matrix and 𝑏 is a real vector with𝑀 elements. Here𝑊,𝑏 are

called the model parameters, and their values define different linear functions. Our

target is to find the parameter values that would minimize (optimize) the mean

squared error (MSE) for the observed data:
1

𝑁

∑
𝑛=𝑖 ∥𝑦𝑖 − (𝑥𝑖𝑊 + 𝑏)∥2. The MSE

error function is called the objective or loss function.
Nevertheless, more generally, the relation between 𝑥 and 𝑦 may be non-linear, i.e

the function 𝑓 (𝑥) is a non-linear transformation. For this case, linear basis function

regression [Bis06] can be used, where the input 𝑥 is transformed with 𝐾 scalar-

valued non-linear functions𝜑𝑘 (𝑥) to form a feature vector𝛷 (𝑥) = [𝜑1(𝑥), ..., 𝜑𝑘 (𝑥)].
Then, the regression is performed on the transformed versions of the inputs, rather

than the inputs. The basis functions𝜑𝑘 can be polynomials 𝑥𝑘 , sinusoidals, Gaussian

basis functions, or even parameterized functions, e.g. 𝜑
𝑤𝑘 ,𝑏𝑘
𝑘

. In the latter example,

𝜑𝑘 is applied to the inner-product of ⟨𝑤𝑘 , 𝑥⟩ + 𝑏𝑘 . For example, if 𝜑𝑘 (.) = cos(.),
then 𝜑

𝑤𝑘 ,𝑏𝑘
𝑘
(𝑥) = cos(⟨𝑤𝑘 , 𝑥⟩ + 𝑏𝑘). From now on, we assume the basis functions

𝜑𝑘 are usually identical for all 𝑘 . The respective outputs of the basis functions

in the feature vector 𝛷 (𝑥) are again fed as inputs to the linear transformation.

Hence, the model output can be rewritten as 𝑓 (𝑥) = 𝜑
𝑤1,𝑏1
𝑘
(𝑥).𝑊2 + 𝑏2, where

𝜑
𝑤1,𝑏1
𝑘

= 𝜑 (𝑊1𝑥 + 𝑏1), and𝑊1 is a matrix of 𝐿 × 𝐾 dimensions, 𝑏1 is a vector with 𝐾

elements,𝑊2 a matrix of 𝐾 ×𝑀 dimensions, and 𝑏2 a vector with𝑀 elements. Now,

the regression parameters are𝑊1, 𝑏1,𝑊2 and 𝑏2, and our task becomes finding their

values that minimize the MSE of ∥𝑦 − 𝑓 (𝑥)∥2.

Feed-forward neural networks

The quintessential deep learning model, which is the Multilayer Perceptron (MLP),

AKA feed-forward neural network [RHW88] or fully-connected layers, can be

described as hierarchies of the above parameterized basis functions to form layers,
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Figure 2.1: An MLP with three layers, including one hidden layer with five units.

as shown in Fig. 2.1. In such hierarchy, each layer outputs a feature vector that

is fed to the next layer as input, and so on. They are called feed-forward because

information flows through the function being evaluated from input, through the

intermediate (hidden) layers in the network, till the output [GBC16]. Each hidden

layer contains a weight matrix𝑊 and a bias vector 𝑏, both of which are used

to transform the input 𝑥 to obtain the layer’s output𝑊𝑥 + 𝑏. Then, this output
is transformed with an element-wise non-linear activation function 𝜎 (.), such
as rectified linear units (ReLU), Sigmoid functions, or hyperbolic tangent (tanh).

Subsequent hidden layers take the transformed output of previous layers as inputs.

This is repeated up to the output layer of the network, whose activation function

depends on the task being solved. For regression, a simple linear or ReLU function

may be used. For binary classification (binomial output distributions) usually

the logistic function (Sigmoid) is used. For multi-class classification (multinomial

output distributions), a Softmax function is used. Fig. 2.2 summarizes widely used

activation functions.

On the capacity of deep neural networks

In the MLP, or any type of neural network, the number of hidden layers is called

the network depth. Such depth is often used as an intuitive measure for model
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Figure 2.2: Commonly used activation functions in neural networks. Source: [J]

expressiveness, which relates to the complexity of the function the model can

learn [BL07]. Normally, deeper models are widely considered to be more powerful,

meaning they would be able to learnmore complex functions, i.e. the model capacity

is larger. Another factor that influences the model capacity is the number of units,

or neurons, within each hidden layer. Increasing such number would affect the

network width. This certainly comes with a computational expense, and excessively

large models may exhibit overfitting. Therefore, many techniques attempt to handle

overfitting situations, such as by searching for the optimal model architecture or
by limiting the magnitudes of model weights, which is usually referred to as

regularization. In contrast, it may happen that the neural network model is not deep

enough, i.e. has limited capacity, which in turn results in underfitting. Many of

these aspects are controlled by scalar values, e.g. network depth, which are usually

referred to as hyper-parameters. In many applications, practitioners often resort to

heuristics to reduce the search efforts for the optimal neural network setup.

On the optimization of deep neural networks

As mentioned earlier, training a neural network means finding the values of the its

parameters (weights and biases) that would optimize (minimize) the chosen loss

function, e.g. MSE. In general, deep neural networks are trained using a form of

the stochastic gradient descent (SGD) algorithm accompanied with a form of the

Back-propagation algorithm [BDD63]. Here, the SGD algorithm is used to perform
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the learning (optimization) using the gradients of the loss function, while the Back-

propagation is used to actually calculate the gradients. Technically, a neural network

defines a graph, as shown in Fig. 2.1, and computing the gradients of the loss would

entail applying the chain rule of differentiation, i.e. the gradients of each layer

would require the gradients of subsequent layers. Hence, formulating the gradients

may produce many duplicate terms, resulting in redundant gradient calculations

if SGD is to be used alone. Therefore, the Back-propagation, which is a dynamic

programming algorithm, aims to avoid such re-computations. Many alternatives

for the back-propagation algorithm exist, however they use similar differentiation

strategies with dynamic programming techniques. In theory, obtaining the optimal

weights can be performed by using any optimization algorithm, e.g. evolutionary

methods. Nevertheless, most deep learning methods employ some form of the

back-propagation algorithm, due to its speed in training the models.

Other techniques of speeding up the training process also exist, such as extensions

of the SGD optimization algorithm itself. Here, before wemention examples of these

extensions, we should describe briefly the update rule employed by SGD [RM51]:

𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇ℓ (𝑤𝑡 ) (2.1)

Here, the above equation is only the update rule of the weight parameter 𝑤𝑡 , which

has a specific value at time point 𝑡 and the aim is to estimate its next value at

point 𝑡 + 1. The network loss is ℓ (𝑤𝑡 ), for which we compute its gradient with

respect to ∇ℓ (𝑤𝑡 ). Then, this gradient is subtracted from 𝑤, after being scaled by a

hyper-parameter that is called the learning rate 𝜂. This scalar determines how far

to move with each gradient in each iteration. The above equation is at the heart of

the SGD algorithm, where the gradients of the loss (w.r.t. the model parameters)

guide the training process to reach a minimum point in the loss function plane.

The several extensions [Cho+19] of the SGD algorithm are usually modifications of,

or additions to, the update rule in Eq. (2.1). These are commonly called optimizers.
For instance, momentum methods [Nes83; Pol64] add a constant multiple of the

previous parameter update, to encourage faster training progress. Other more

sophisticated optimizers maintain adaptive per-parameter learning rates, such as

AdaGrad [DHS11], RMSProp [TH12], and Adam [KB14b]. These latter optimizers

mainly differ in how they update the per-parameter learning rates, e.g. based on

the recent magnitudes of the gradients for each parameter. In short, as can be

already observed, all optimization algorithms in Deep Learning rely on SGD, and it

is common to use heuristics in deriving the update rules of such optimizers.
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Common types of deep neural networks

While MLPs offered simplicity in their design, they oftentimes become inefficient

when processing high-dimensional sparse input data, e.g. images, videos, or natural

language sequences. This mainly is caused by their fully-connected nature, where

each neuron in each layer is assumed to be connected to every neuron in previous

and subsequent layers, as Fig. 2.1 shows. Nowadays, MLPs are still widely-used, e.g.

to vectorize their inputs for classifiers or for tabular datasets, but mostly along with

other specialized types of neural network layers. A specialized neural network type

is called Convolutional Neural Networks (CNN), which is widely used to process

signal inputs, e.g. images and audio. Due to their favorable characteristics, we rely

on CNNs as model architectures in most of our methods, hence we elaborate on

them in the next paragraph. Other specialized neural networks are sequence models,

such as Recurrent Neural Networks (RNN) [RHW88; Wer88], which are usually

suitable for processing data with sequence nature, e.g. natural language and time-

series. RNNs, and their more successful variant LSTMs [HS97], were able to process

and learn from sequence inputs, especially in setups called sequence-to-sequence

(Seq2Seq in short) [SVL14] such as in language translation. However, developments

in attention techniques, namely self-attention in Transformer models [Vas+17],

allowed for improved performances in Seq2Seq applications. The limitation in

RNN-based models that Transformers overcame was mainly their sequential word-

by-word processing. The non-sequential nature of Transformers allowed processing

input-output sequences in parallel, and also enabled longer dependencies within

sequences. Transformer architectures allowed training large language models, e.g.

BERT [Dev+18] and co., which considerably advanced the performance on Natural

Language Processing benchmarks. Transformer-based models have also recently

found applications in computer vision [Dos+20; Tou+21]. However, admittedly,

such architectures require tremendous amounts of input images to match the

performances achieved with CNNs on image benchmarks, due to favorable data-

efficiency properties inherent to CNNs. More details in the next section.

Convolutional Neural Networks (CNNs)

CNNs [LeC+89a; RHW88] are deep learning models that excel at processing data in-

puts with a known grid-like topology [GBC16]. Examples include one-dimensional

time-series, two-dimensional images, and even three-dimensional images. Despite

being invented since the 1980s, their popularity recently increased [KSH12] after

enabling solving image classification tasks that were considered beyond our reach.

The AlexNet [KSH12] model consisted of consecutively applied convolution and
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pooling layers, followed by the fully-connected layers. Since then, several improve-

ments and advancements occurred on CNNs, and they appeared to succeed in

several computer vision applications afterwards, such as object detection [Gir+13],

semantic segmentation [LSD15], image retrieval [Gon+14], human action recogni-

tion from videos [Bac+11; Ji+12], and many more. CNNs have even found success

in natural language processing, speech recognition, and time-series forecasting

tasks [Gu+18].

In mathematics, the convolution is an operation between two functions of real-

values. Assume the two functions 𝑥 and ℎ for instance, their convolution is ex-

pressed by 𝑥 ∗ ℎ, with an asterisk or star. This operation is defined as the integral

of the product of the two functions after one is reversed and shifted:

𝑦 (𝑡) = (𝑥 ∗ ℎ) (𝑡) =
∫ 𝑏

𝑎

𝑥 (𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏 (2.2)

Where 𝑥 is called the input function or signal, ℎ is called the system function, 𝑦

is the output signal, and 𝜏 denotes the time or count for example. The system

function ℎ can be any desired function, and is usually chosen to have properties

useful for the application. In the terminology of convolutional neural networks

(CNNs), and assuming 2D images as inputs, the input function 𝑥 is simply the input,

the system function ℎ is referred to as the kernel, and the output function 𝑦 is called

the feature map. A simple convolutional layer is illustrated in Fig. 2.3. Here, the

convolutional layer is a linear transformation that preserves spatial information

in the input image, and it consists of multiple kernels that are stacked together,

similar to image color channels. An essential note here is that the values in each

convolutional kernel are not fixed in each spatial location, they are in fact learned to

capture simple, e.g. edges, or more complex features, e.g. human faces, from input

images. Within a CNN, such convolutional layers are stacked consecutively to form

a hierarchical architecture, similar to MLPs described before. Hence, it becomes

intuitive that the learned features in earlier layers of the CNN are fine-grained edges

or corners, and the complex features appear in the higher layers as coarse-grained

objects. Illustrations of these features across the layers can be found in the work of

Zeiler et al. [ZF13], we include an example in Fig. 2.4.

Another essential building block in CNNs is the pooling layer, which operates on

the feature maps produced by convolution layers and reduces their dimensionalities.

Such dimensionality reduction is a feature selection technique as a matter of fact,

and is performed by simply applying summary statistics of nearby values, such

as max pooling [ZC88] and average pooling [LeC+89b]. Max pooling computes

the maximum of (𝑛, 𝑛) input blocks of pixels, whereas average pooling computes
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Figure 2.3: A convolution process by a kernel in a convolution layer of a CNN.

Source: [Gal16]

the mean of input blocks of pixels. Not only pooling layers are important for

feature selection, but also they add Translation Invariance to CNNs, i.e. the features

obtained by convolutional layers are described as invariant to translation. This

property means that detected objects may be anywhere in input images. Translation

Invariance is one of reasons behind the attractiveness of convolutional layers when

processing image inputs, as it improves the data-efficiency of CNN models, thus

requiring less input images to learn how a certain object looks. In reality, the types

of Invariances to different image transformations, see examples in Fig. 2.5, are all

meant to inflict the same data-efficiency behavior. The other types of transformation

invariances, e.g. to rotation, are usually added to CNNs, or any other architecture

for that matter, by artificially creating (augmenting) the training dataset with

transformed image versions.

Transfer Learning

The recent wave of interest in Deep Learning models, which was revived mainly

in the Computer Vision field with the introduction of AlexNet [KSH12], can be

attributed also to the employment of high-performing Graphical Processing Unit

(GPU) machines. Efficient implementations of convolution operations and dis-

tributed training on GPUs have enabled faster training procedures on large datasets

such as ImageNet [Den+09]. However, training such models from scratch requires
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Figure 2.4: Visualizations of CNN layer features. Source: [ZF13]

significant resources aswell as long training schedules. In addition, it has been found

that the learned hierarchical representations (features) from such large datasets are

rich with semantic information about the different classes in the dataset [Gir+13;

Gon+14; LSD15], see Fig. 2.4. Therefore, all these reasons, prompt the idea of repur-

posing, or rusing, the learned representations in these models on different, often

smaller, datasets. This is referred to as Transfer learning, in which the model pa-

rameters are fine-tuned or refined on other datasets or domains. Fig. 2.6 illustrates a

simplified CNN, where the network consists of two main parts: a convolutional base

for feature extraction, and a classifier part. Transfer learning would usually mean

replacing the latter part, the classifier, and keeping (reusing) the convolutional part.

It is also possible to unfreeze the weights in the convolutional part and fine-tune

their weights slightly, especially if the new domain is semantically different from

the source domain (the one on which the model had been trained on). The story of
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Rotation Invariance Viewpoint Invariance

Figure 2.5: Examples of invariance to various transformations.

Input

Convolutional Base (feature extraction) Classifier

Prediction

Figure 2.6: Architecture of a model based on Convolutional Neural Network.

transfer learning from ImageNet has sparked an interest in learning representations

in an unsupervised manner, from large unlabeled datasets too, as we will see in

subsequent sections.

2.1.3 Modality

We, as humans, appear to experience the world in a multimodal manner: we see

and observe objects around us, we hear the sounds they make, we smell odors and

scents, we touch and feel the textures, and we taste the different flavors. Therefore,

a modality is a term used to reflect how certain things are experienced. For in-

stance, when attempting to understand what another human is speaking, we most

times need both audio and visual information to be able to fully understand them.
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Similarly, to improve Machine Learning or Deep Learning methods’ understanding

of the world, processing such multimodal inputs is required.

In literature, a sub-field in AI that is often referred to as Multimodal ML or

DL subsumes the different related aspects. Works in Multimodal DL are numer-

ous [BAM19; Bay+21; Ngi+11; Sum+21]. Multimodal learning comes with several

inherent challenges, to name a few:

1. Multimodal fusion: where it is usually asked whether to fuse the information

from each modality at a stage before feature extraction (early fusion) or

afterwards (late fusion).

2. Alignment: here the correspondences across the modalities are investigated,

e.g. aligning the words in a video caption with the visual actions and spoken

signals in the audio.

3. Representation: finding the most informative way to represent the knowledge

from combined modalities, which are usually heterogeneous in nature, e.g.

language is symbolic but vision modalities are signals.

Learning multimodal representations is essential in solving many applications.

Modalities of Medical Imaging

It is necessary to make a distinction between the notion of data modality, which

we defined above, and the medical imaging modality. A medical imaging modality

is also another view on the objects, here body organs or tissues. However, the

difference is that medical imaging modalities are forms of images, and they usually

are used depending on the medical use-case. For instance, as shown in Fig. 2.7,

X-Ray scans highlight bone structures, but MRI scans are able to capture soft tissues

more clearly. Radiologists and physicians request specific scan types depending

on the situation, and to have more information on certain tissues and organs, e.g.

some cancer tissues only appear in specific variants of MRI. The reader is kindly

referred to more specialized resources for additional information about different

medical imaging modalities [AYM14; Bey+20; EJ16; EM11].

2.2 Deep Learning in Medical imaging
Medical imaging plays an essential role in patient healthcare, as it allows physicians

to view the patient anatomy and therefore diagnose conditions otherwise unfeasible

without such medical scans. As explained in previous section, and as shown in
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Figure 2.7: Examples of commonly used medical imaging modalities. Source: [Bey+20]

Fig. 2.7, medical imaging technologies are diverse, and are acquired based on the

condition type. Such advancements in medical imaging acquisition technologies

also comes with an expense: an expert professional is required to interpret the

scans. A task that is usually costly, in terms of effort and time. As a result, the

success of deep learning in computer vision domains warranted its extension to

medical imaging domains. One of the main advantages of applying deep learning

on medical scans is that it expects raw images as inputs, and the corresponding

labels. In other words, when using deep learning to interpret input scans, it is not a

prerequisite to know the scanning technology in detail. Certainly, knowing such

information may help in designing a more appropriate model architecture, but it is

not a necessary condition.

As a result, due to its appealing properties, deep learning has been receiving a

continuing interest in medical imaging applications. A comprehensive review of the

studies that investigated deep learning applications in the medical imaging domain

is out of the scope of this thesis, thus the reader is referred to more specialized

articles [AMZ21; Ker+17; Kim+19b; Ma+20]. However, we summarize below some

application categories for deep learning in medical imaging:

1. Image classification and object detection: classifying the existence and
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the type of a disease frommedical scans is a common task for deep learning. It

has seen interest in diagnosis of tuberculosis and similar diseases from Chest

X-Rays [LS17], diabetic retinopathy from eye Fundus images [Gul+16], skin

cancers [Est+17], and many more. Basically classifying lesions and anomalies

in almost every medical imaging modality is possible with deep learning

methods. To make the task even more useful, such lesions and anomalies are

also oftentimes located in the scans with object detection and region proposal

techniques [Kim+19b; Liu+17; ZDG19].

2. Semantic segmentation: a more useful deep learning task for radiolo-

gists is segmenting the lesions pixel-wise. Many studies have attempted to

segment brain tumors [Per+16], lung cancer [Gor+18], and many cells and

organs [RFB15].

3. Image generation and translation: a specific deep learning application,

which receives continuous attention, is image generation with generative

adversarial networks (GANs) –a specialized architecture for such task–. This

application allows for generating almost realistic images from deep networks.

In the medical imaging domain, these models have also found use-cases,

especially in translating across medical imaging modalities [Arm+19; JRP19;

Wol+17; Yan+18; ZYZ18]. This becomes particularly useful when certain

modalities are more expensive or harder to obtain.

4. Image registration: this application is widely used in the medical imaging

domain as a preprocessing step for other tasks, e.g. segmentation. It refers to

the spatial matching of images, here medical imaging modalities, based on

their contents. A review of such works is in [Fu+20].

While applications in the medical imaging domain can considerably benefit from

deep learning techniques, e.g. to aid in diagnosis, extending them to practical

clinical use-cases faces a major impediment, the requirement of the expert annota-

tions [Grü+17; Ker+17], as mentioned earlier. The annotation process in medical

imaging application is similar to that used for natural imaging; it means assigning

labels to input images in preparation for training datasets in pairs of data and labels.

However, natural imaging datasets are usually collected from numerous photos

obtained from various sources, such as social media, and annotating such images is

often possible by non-experts via crowd-sourcing [Kov+16]. On the other hand,

annotating medical images requires expert knowledge and skills, which usually

only domain professionals, e.g. radiologists, possess. Therefore, manual medical

image annotation is an expensive process, and as a result fewer numbers of labels
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Classification
Lung nodule image

Detection
Lung nodule location

Segmentation
Lung nodule boundary

Figure 2.8: The type of annotation relies on the application category (the downstream

task), and this in turn influences the associated labelling costs. This figure shows examples

of brain tumor annotation for the tasks of classification, detection, and segmentation. The

nature of the acquired labels range from the existence of the nodule, its location, and

an accurate contour of its boundary (from left to right in the figure). It is apparent that

the finer in detail the annotation is, the more expensive it becomes. Scans are from the

BraTS [Bak+17; Men+15] dataset.

exist for the medical imaging domain. Fig. 2.8 illustrates the common annotation

types in medical imaging.

As we will see throughout this thesis in subsequent sections, we address this

challenge in order to improve the applicability of deep learning methods in the

medical imaging domain, by relaxing this constraint of annotation.

2.3 Self-supervised Representation Learning

Asmentioned earlier when defining transfer learning in the context of deep learning,

reusing the learned representations from the ImageNet [Den+09] dataset allowed

for both improved performances and reduced annotation quantities across multiple

tasks and benchmarks. However, constructing a dataset the scale of ImageNet,

which has almost 1.6 million labeled images categorized across 1, 000 classes, is

certainly not an easy nor an inexpensive job, oftentimes requiring expensive crowd-

sourcing platforms [Kov+16] to accomplish the task. Hence, it is become a necessity

to turn to the promise of learning data representations from virtually infinite

amounts of data available online with unsupervised methods.

Unsupervised representation learning methods are generally of two types: gen-

erative and discriminative. Generative approaches build a distribution (a den-

sity function), over the data with the aim to generate realistic images, mainly.
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These approaches may also learn latent embeddings, which they use as image

representations. Depending on the type of the density function learned by gen-

erative models, they can learn explicit density such as variational auto-encoders

(VAEs) [KW13; Vin+08] or implicit density such as generative adversarial networks

(GANs) [DKD16; Goo+14]. With the goal of generating or hallucinating realistic

images in mind, generative approaches operate directly in the pixel space. This

deems them computationally expensive, and also learning pixel-level details that

are mostly unnecessary for learning semantic data representations. That is not

to say that generative approaches have not been explored in the representation

learning direction, we mention a few works below.

In discriminative approaches for unsupervised representation learning, usually

called self-supervised learning (SSL) methods, the aim is to construct (learn) a repre-

sentation (embedding or feature) space, in which data samples that are semantically

similar are encouraged to come closer to each other while moving farther from

dissimilar samples, resembling clusters of data. SSL methods learn this embedding

space by first deriving and solving a supervised proxy (auxiliary) task from the

unlabeled data. A clear illustrative task is colorization [ZIE16], if the colors of the

training images were to be removed and the deep learning model were to repaint

them with the correct colors. Here, the source of supervision signal is the data itself,

no human expert annotation is required. The resulting semantic representations

from such task are in the form of neural network weights, and will also be useful

for other real-world downstream tasks, afterwards. This two-phase scheme of SSL

methods is depicted in Fig. 2.9.

SSL methods have been explored in multiple application fields [JT20], with roots

in the natural language processing field in theWord2Vec [Mik+13] algorithm, which

uses the context of the word as a source of supervision signal. A comprehensive

review of SSL methods can be found in more specialized surveys [JT20; Liu+21;

WK]. In this section, we review few relevant works that operate on image inputs

mainly, as most of our methods process images as inputs. SSL methods differ mainly

in the type of the proxy task used to learn data representations, as illustrated in an

example taxonomy in Fig. 2.10. We review some relevant SSL methods below.

Note: In this thesis, we use the terms self-supervised

learning and unsupervised learning interchange-

ably, as both terms usually refer to the same con-

cept. However, self-supervision is not to be con-

fused with self-training. The latter term is used

in semi-supervised learning approaches [RHS05;
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Figure 2.9: Flowchart of self-supervised learning stages. First, a deep learning model is

trained on unlabeled data with a proxy task. Then, the obtained representations are trans-

ferred into a target downstream task. Figure source [Tal+22b], reprinted with permission.

Xie+20] often to refer to pseudo-labelling [Lee+13].

2.3.1 Pretext Task Learning
Pretext task learning methods rely on auxiliary handcrafted tasks to learn data

representations. Disregarding if generative or discriminative, the effective difference

across these tasks is the source of supervision signals. A commonly used source is

the spatial context in the images, inspired from the skip-gram Word2Vec [Mik+13]

algorithm. Doersch et al. [DGE15] generalized this idea to computer vision to learn

a visual representation by predicting the position of an image patch relative to

another (Fig. 2.11 (a)). Noroozi et al. [NF16] extended this patch-based approach

to solve Jigsaw puzzles on natural images as a proxy task (Fig. 2.11 (b)). Other
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©CC BY 4.0

Figure 2.10: Self-supervised proxy tasks taxonomy. Source: [WK]

supervision sources, other than spatial context, were also employed. Examples

include image colors [ZIE16] (Fig. 2.11 (c)), image rotation prediction [GSK18]

(Fig. 2.11 (d)), masked pixels in-painting [Pat+16] (Fig. 2.11 (e)), clustering with

k-means [Car+18] (Fig. 2.11 (f)), and transformed versions of images [Dos+14]

(Fig. 2.11 (h)). One challenge that may appear in solving such pretext tasks is

the tendency of deep networks to focus on shortcuts related to solving the task

successfully, and hence compromizing the generalization of the learned features.

Misra et al. [MM20] (Fig. 2.11 (g)) attempted to address such limitation by learning

pretext-invariant data representations. In chapter 3 and chapter 4 we propose

several pretext tasks that prove useful in the medical imaging domain.

2.3.2 Contrastive Learning
Overall, pretext task learning methods have shown evidence that learning seman-

tically rich data representations from unlabeled images is possible. Nevertheless,

designing handcrafted auxiliary tasks turned out to be a difficult task, after all,

there is only so many types of supervision signals one can derive from still images.

In addition, the performance of SSL methods in downstream tasks was still behind

supervised counterparts, justifying the search for more informative tasks.

Contrastive Predictive Coding (CPC) approaches in [Hen20; OLV18] follow an

auto-regressive way to classify future or next "positive" representations among

a set of unrelated "negative" samples (Fig. 2.12 (a)). Here, the negative samples

are simply image patches drawn from other locations in the image or even from
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other images. The core concept behind CPC, which made them learn better data

representations, is the InfoNCE loss [OLV18]. This loss maximizes the mutual

information between related signals, here images, in contrast to others, and is

inspired from Noise Contrastive Estimation [GH10]. The InfoNCE loss has been

at the core of many subsequent contrastive learning methods [Che+20a; Che+20b;

Dwi+21; He+20; Hje+18; Wu+18b]. The main difference is that more advanced

methods use whole images as positive and negative samples, instead of patches.

The latter contrastivemethods have also been inspired by Exemplar networks [Dos+14]

(Fig. 2.11 (h)) in learning transformation-invariant representations (see Fig. 2.5).

Exemplar networks create an artificial class for each image using image transfor-

mations (augmentations), which can become exhaustive if the number of images

in the dataset is large. On the other hand, contrastive methods, e.g. SimCLR

(Fig. 2.12 (b)), utilize the InfoNCE loss, mentioned above, which simplifies the prob-

lem into a binary classification task of positive versus negative samples. Contrastive

approaches, particularly [Che+20a; He+20], have improved the performances of

SSL on natural imaging benchmarks [Den+09; Eve+10]. Nonetheless, contrastive

methods that rely on the InfoNCE loss require sufficient numbers of negative sam-

ples. SimCLR [Che+20a] draws these negative samples from the same mini-batch,

necessitating a larger batch size. MoCo [He+20] draws negative samples from a

memory bank that is internally a FIFO queue, allowing larger numbers of negative

samples. Few recent works [Car+20; CH21; Gri+20; Zbo+21] attempt to avoid the

negative sampling (mining) mechanism, which can be computationally expensive.

We elaborate more on these approaches in chapter 5 and chapter 6, where we create

our own contrastive methods that prove effective in the medical imaging domain.

2.4 Self-supervision in the Medical Context
In the medical imaging domain, SSL methods have also witnessed a recent surge

of interest [Taj+20; Xu21], due to the high cost incurred in annotating medical

scans. Early attempts of extending self-supervision to medical images focused on

particular use-cases and made assumptions about the data. Example works include

depth estimation in monocular endoscopy [Liu+18], robotic surgeries [Ye+17],

medical image registration [LF18], cardiac image segmentation [Bai+19], body part

recognition [ZWZ17], disc degeneration using spinal MRIs [JKZ17], body part

regression for slice ordering [Yan+19], and many others [Roß+17; Spi+18].

Several other works also proposed pretext tasks for the medical imaging domain,

which improved the generalization of learned representations from the data. For

instance, Tajbakhsh et al. [Taj+19] predicted medical scan’s orientation as a proxy
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task, Spitzer et al. [Spi+18] predicted 3D distances between two 2D patches in brain

scans, Zhou et al. [Zho+19b] used image reconstruction tasks in 3D scans to learn

data representations, Jiao et al. [Jia+20] utilized the order of clips in ultrasound

videos as a free source of supervision signals, Zhuang et al. [Zhu+19] used 3D

jigsaw puzzles solving as a proxy task, and many other works that utilize the image

spatial context for learning representations [BNH19; Che+19]. In chapter 3 and

chapter 4 we present our developed proxy tasks, which show improved results on

multiple medical imaging benchmarks.

More recently, contrastive learning methods have also been applied to medical

images [Cha+20; Hu+19; LAS20], where they also showed promising results on

different medical imaging downstream tasks. As we show in chapter 4 and chap-

ter 5, contrastive learning can improve the quality of learned data representations

from 3D medical scans and also when integrating with other different modalities,

respectively. In chapter 6 we demonstrate a way to take advantage of domain

knowledge from medical scans to improve the learned data representations with

contrastive methods.
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©2015 IEEE/CVF

(a) Context prediction [DGE15] of a patch’s

position (e.g. Y=3) relative to the center.

©2016 Springer AG

(b) Jigsaw puzzle [NF16] solving by predicting

the applied permutation as a proxy task.

©2016 Springer AG

(c) Image colorization [ZIE16] by recovering

the original colors of images.

©CC-BY 2.0

(d) Rotation prediction [GSK18] of artificially

applied rotations on input images.

©2016 IEEE/CVF

(e) In-painting [Pat+16] of masked pixels, to

recover original appearance and texture.

©2018 Springer AG

(f) K-Means clustering [Car+18] of image fea-

tures uses the clusters as classification targets.

©2020 IEEE/CVF

(g) Pretext-invariant learning [MM20] attempts

to learn pretext-invariant representations.

©CC-BY 2.0

(h) Exemplar networks [Dos+14] uses trans-

formed images as classes.

Figure 2.11: Examples of self-supervised pretext (proxy) tasks for representation learning.
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©CC-BY 2.0

(a) Contrastive predictive coding [Hen20] uses

an auto-regressive classifier for future or next

"positive" representations among a set of unre-

lated "negative" samples.

©CC-BY 2.0

(b) SimCLR [Che+20a] utilizes the InfoNCE

loss that simplifies the problem into a binary

classification task of positive versus negative

samples. Figure Source: [Tsa]

Figure 2.12: Examples of contrastive learning approaches for representation learning.

27





3 Self-supervision from Mul-
timodal Medical Images

This chapter extends own work in [Tal+21] and [Tal+19], presented at the Inter-

national Conference on Information Processing in Medical Imaging (IPMI 2021)

and the Workshops of Neural Information Processing Systems (NeurIPS 2019),

respectively.

3.1 Introduction

Modern medical diagnostics rely on the analysis of multiple imaging modalities,

such as in differential diagnosis [Lon+12]. As explained earlier in Sec. 2.1.3, medical

images are multimodal, e.g. MRI and CT. As can be seen in Fig. 2.7, modalities of

medical images have different characteristics in appearance and in what structures,

tissues or organs they are able to capture. Multimodality in medical imaging is

motivated for exactly that reason, from an anatomical perspective, the physical

properties of different organs and tissues are expressed in a complementary fashion.

For instance, soft body tissues are better rendered in MRI, whereas CT images

capture bone structures more clearly. In addition, certain types of brain tumors

or tissues are better seen in specific MRI modalities. Several other examples can

be found in more specialized sources [EM11]. The multimodal nature of medical

scans and the rich complementary information across these modalities motivate

exploiting this property in learning data representations. Integrating the cross-

modal complementary information early in the learned representations is necessary

for solving subsequent downstream tasks accurately, e.g. semantic segmentation.

As mentioned in earlier chapters, learning representations with supervised meth-

ods requires significant amounts of data labels, hence motivating self-supervised

learning as a viable alternative when labeled training data is scarce. Some self-

supervised methods, e.g. [DGE15; NF16], utilize the spatial context as a supervisory

signal to learn effective data representations. However, these methods derive the

spatial context from uni-modal image inputs. On the other hand, we extract the

spatial context from multiple medical imaging modalities. To that end, we propose

to include multiple imaging modalities in the design of our Multimodal Jigsaw

puzzle solving task, to integrate the cross-modal complementary information in
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Figure 3.1: Overview of the process pipeline of the proposed method. Assuming two

imaging modalities in this figure: T2 and ADC. (a) Multimodal puzzles are created by

randomly selecting each patch from a different random modality, (b) yielding ground truth

𝑃∗ and random puzzle 𝑃 . (c) Shuffled puzzles 𝑃 are processed by the model to train the

puzzle-solver with the objective of recovering 𝑃∗, (d) by applying the learned permutation

matrix 𝑆 to reconstruct 𝑃𝑟𝑒𝑐 . The example scans are from the Prostate [Sim+19a] dataset.

Figure source [Tal+21], reprinted with permission.

the learned representations. The proposed multimodal jigsaw puzzles are created

by mixing patches from multiple imaging modalities, as depicted in Fig. 3.1.

As explained in Sec. 2.3.1, self-supervised methods with pretext tasks generally

aim to recover the applied transformations to input data to learn visual representa-

tions. Themain intuition behind solving Jigsaw puzzles as a proxy task, in particular,

is that performing well on this task requires understanding scenes and objects, i.e.

the parts that make an object and their relations to each other. Additionally, our

proposed multimodal Jigsaw puzzles also encourage deriving modality-agnostic

notions (or views) about the data, as the puzzle patches are randomly drawn from

several imaging modalities and then mixed in the same puzzle. In other the words,

the model confuses the multimodal knowledge it extracts from input imaging

modalities in the learned representations. Our multimodal puzzle solving task can

be said to define a modality-confusion loss.

As detailed before, modalities of medical scans are diverse, and their respec-

tive properties depend on the use-case and the acquisition process. However, in

real-world clinical scenarios, the quantities of these modalities can vary, i.e. cer-

tain modalities are more abundant than others. This in turn creates a modality
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imbalance problem. In addition, the modalities are often non-registered, meaning

that the scanned regions that capture tissues or organs can have different view

angles or scales. Even though our multimodal Jigsaw puzzles prove effective when

trained and fine-tuned using realistic non-registered multimodal images, as shown

in our experimental results in Sec. 3.4.2 and Sec. 3.4.4. We also propose to address

the modality imbalance problem using a cross-modal generation step, with which

we enhance the quantities of underrepresented modalities. In other words, the

size of the multimodal part in the dataset is increased. This proposed cross-modal

generation step is realized by employing a CycleGAN [Zhu+17] image-to-image

translation model, which also deems the registration of imaging modalities un-

necessary, since it performs this task inherently. By performing this cross-modal

translation step prior to our puzzle-solving task, we demonstrate that synthetic
images can be exploited for self-supervised learning. With the alternative being to

directly training downstream task with synthetic data, which may suffer from qual-

ity issues. As the results in Sec. 3.4.3 show, the introduced cross-modal translation

step alleviates the modality imbalance problem.

In summary, in this chapter, we present twomain contributions. First, a novel self-

supervised pretext task, namely a multimodal Jigsaw puzzle-solving algorithm that

confuses multiple imaging modalities at the data-level. The motivation being that it

allows for integrating complementary information across imaging modalities about

the various concepts in the data. Second, we employ cross-modal image translation

(generation) for self-supervised pretraining, instead of in training downstream

tasks directly. This step is meant to address image modality imbalance phenomena,

and to circumvent quality concerns associated with synthetic data, while at the

same time retaining performance gains in difficult real-world scenarios.

3.2 Related Work
Jigsaw puzzle solving for self-supervised learning. Noroozi et al. [NF16] first
proposed to solve Jigsaw puzzles as proxy task for learning data representations

from natural 2D images, by extending the patch-based approach of [DGE15]. In

contrast to our proposed multimodal puzzles, the puzzles created in [NF16]’s are

uni-modal by design, thus disregarding the vital cross-modal complementary in-

formation from other image modalities. In addition, [NF16]’s method requires

expensive memory and compute resources, which explains the limit of creating

only small puzzles of 3 × 3 for which it uses 9 replicas of AlexNet [KSH12], one

replica for each patch. On the other hand, our method improves the computational

tractability by utilizing the efficient Sinkhorn operator [AZ11; Men+18; Sin64] as
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an analog to the Softmax operator for permutation (ranking) tasks. As a result, we

are able to solve Jigsaw puzzles with higher levels of complexity, e.g. up to 8 × 8
patches. The Sinkhorn operator allows for casting the puzzle solving problem as a

permutation matrix inference instead of classification. The latter requires choosing

a fixed permutation set as classification targets. In other words, choosing a fixed

permutation set size limits the classification task complexity, such as in [NF16],

and thus the complexity of the self-supervised task is capped. Conversely, defining

our task as a permutation matrix inference enforces the model to find the applied

permutation among all possible permutations.

Algorithms to solve Jigsaw puzzles. Puzzle solving algorithms in the field of

artificial intelligence are numerous, and were proposed for different purposes and

applications. Greedy algorithms [Gal12; PPT18; SHC14] use sequential pairwise

patch matching to solve Jigsaw puzzles, deeming them computationally inefficient.

Alternative approaches seek global solutions that observe all the puzzle patches at

once, and optimize an objective measure over them. Example methods for global

solutions include: Probabilistic methods with Markov Random Fields [CAF10],

Genetic (or evolutionary) algorithms [SDN14], consensus agreement algorithms

across neighbors [Son+16], and permutation classification with deep learning mod-

els [NF16]. The latter work [NF16], which we mentioned earlier, also allows for

data representation learning, yet it can only capture subsets of possible puzzle

permutations. Thus, algorithms that are able to capture the whole set of per-

mutations [AZ11; Gro+19; Men+18; San+17] are advantageous. Generally, these

solutions aim to approximate the applied permutation matrix, which is a doubly

stochastic matrix of zeros and ones, and solve an optimization problem to recover

the true matrix. As detailed later in the method section, each permutation of puzzle

tiles corresponds to a unique permutation matrix, which is the ground-truth when

training the models with these solutions, and is approximated by differentiable

operators similar to the Sinkhorn [Sin64]. Analogous to the Softmax operator, these

differentiable operators, e.g. the Sinkhorn, can be employed in the neural network

output, allowing for efficient Jigsaw puzzle solving [AZ11].

Multimodal deep learning works [BAM19; Ngi+11] attempt to tackle many of

the inherent challenges in learning frommultimodal data, such asmultimodal fusion,

alignment, and representation. Multimodal representations may improve learning

in many tasks, which are otherwise unfeasible using single-modal representations.

Prior works that learned deep representations, including self-supervised methods,

combined diverse sets of modalities, such as: image and text [Ant+15b; Ayt+18;

Chu+17; Joh+16; Ree+16; Xu+15; Zha+19], image and audio [Alb+18; AVT16;

AZ17; HTG16; Kar+17; OE18; Owe+18], audio and text [AGG18; YBJ18], and

multiview (multimodal) images [Kum+20; PG16a; SBO18; SZ14]. The latter set of
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works are most relevant to our proposed multimodal puzzles in terms of employed

modality types. In comparison to these works, our approach fuses input imaging

modalities at the data-level as opposed to the feature-level used in these works.

In our approach, actually, we perform an early modality fusion [BAM19] when

creating a multimodal task by fusing the data of multiple modalities and then

solving that task. In the feature-level modality fusion, the model is expected to

confuse (or combine) the modalities in the learned features, which corresponds to

late modality fusion [BAM19]. The feature-level approach is likely to fail when the

difference between the characteristics of the modalities is high. On the other hand,

our approach is expected to bridge this difference as the integration of modalities

occurs at the data-level, as our experimental results confirm.

Image-to-image translation (or conversion) with Generative Adversarial

Networks (GANs) [Iso+17; Yi+17; Zhu+17] found multitude of use-cases in the

medical imaging domain [Arm+19; JRP19; Wol+17; Yan+18; ZYZ18]. These works

aim mainly to improve the quality of cross-modal translation, an objective we

deem orthogonal to our goal. In fact, similar to [Fu+18; San+19; Tan+19], we

utilize cross-modal translation methods as means of input augmentation to improve

the downstream performance. However, especially in clinical applications, the

quality of synthetic images may be questionable. Therefore, we circumvent this

quality concern by employing synthetic (translated) images for pretraining purposes

only (in training multimodal puzzle solver models), and not for the downstream

prediction tasks. Furthermore, this fashion of exploiting generated images addresses

situations where aligned multimodal samples are limited in quantities, yet their

existence is vital to learn the cross-modal information. Here, we refer to the

modality imbalance problem mentioned earlier. For example, certain modalities

exist in abundance (e.g. X-Ray) in clinical settings, and others are less abundant

(e.g. MRI), due to acquisition regimes.

3.3 Methods
Medical imaging modality types are numerous [EM11] and vary in their character-

istics and use-cases. For forming our multimodal puzzles and training the models

to solve them we assume no prior knowledge about which modalities are employed,

i.e. they can vary from one task to another. Even though our method is able to

operate on inputs from one modality only, in the following method formulation we

assume inputs from two or more imaging modalities. Some passages in this section

have been quoted verbatim from own work in [Tal+21], and are only insignificantly

changed. Namely, we refer to the passages in Sec. 3.3.1, Sec. 3.3.2, and Sec. 3.3.3.
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Figure 3.2: Schematic illustration showing the steps of the proposed multimodal puzzles

with scans from the BraTS [Bak+17; Men+15] dataset. (a) Assuming four image modalities

of Brain MRI in this example, (b) these images are then used to construct multimodal

jigsaw puzzles, drawing patches from all the modalities randomly, here we show 2 × 2

puzzles for simplicity. The neural network model 𝐺 extracts features from input patches,

and the Sinkhorn layer outputs a soft permutation matrix 𝑆 that approximates the true

permutation matrix. Then, 𝑆 is applied to the shuffled puzzle 𝑃 to reconstruct the puzzle

𝑃𝑟𝑒𝑐 , which is minimized to 𝑃∗with an MSE loss function. Figure source [Tal+21], reprinted

with permission.

3.3.1 Multimodal Puzzle Construction

Solving a jigsaw puzzle involves two main steps. First, the image is cut into

puzzle pieces, which are shuffled randomly according to a certain permutation.

Second, these shuffled image pieces are assembled such that the original image

is restored. If 𝐶 is the number of puzzle pieces, then there exist 𝐶! of possible

puzzle piece arrangements. It should be noted that when the puzzle complexity

increases, the association of individual puzzle tiles can be ambiguous, e.g. puzzle

tiles that originate from uni-colored backgrounds can be tricky to place correctly.

Nevertheless, the placement of different puzzle tiles is mutually exclusive. Thus,

when all tiles are observed at the same time, the positional ambiguities are alleviated.

In a conventional jigsaw puzzle, the puzzle pieces originate from only one image at

a time, i.e. the computational complexity for solving such a puzzle is 𝑂 (𝐶!).
On the other hand, we propose a multimodal jigsaw puzzle, where tiles can be

from 𝑀 different modalities. This proposed multimodal puzzle simultaneously
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learns the in-depth representation of how the organs compose, along with the spa-

tial relationship across modalities. As a result, the complexity of solving multimodal

puzzles is increased to 𝑂 (𝐶!𝑀 ). Consequently, this quickly becomes prohibitively

expensive due to two growth factors in the solution space: i) factorial growth in

the number of permutations 𝐶!, ii) exponential growth in the number of modalities

𝑀 . To reduce the computational burden, we use two tricks. First, we employ the

Sinkhorn operator, which allows for an efficient solving of the factorial factor. Sec-

ond, we employ a feed-forward network𝐺 that learns a cross-modal representation,

which allows for canceling out the exponential factor 𝑀 while simultaneously

learning a rich representation for downstream tasks.

Algorithm 1:Multimodal jigsaw puzzle creation

1: Algorithm Create Puzzles
Input: - modality lists (𝑚1,𝑚2, . . . ,𝑚𝑀 ), each with 𝐿 slices

2: - number of patches in a puzzle (𝑛𝑝)

3: - list of possible permutations (𝑝𝑒𝑟𝑚𝑠)

4: - # of puzzles to generate per slice (𝑛𝑝𝑠)

Output: list of multimodal 𝑝𝑢𝑧𝑧𝑙𝑒𝑠

5: for 𝑖 ← 1 to 𝐿 do
6: for 𝑝𝑡 ← 1 to 𝑛𝑝 do
7: 𝑚 ← choose random modality

8: 𝑝𝑎𝑡𝑐ℎ𝑒𝑠 [𝑝𝑡] ← fill patch in position 𝑝𝑡 from slice with modality

𝑚

9: for 𝑝 ← 1 to 𝑛𝑝𝑠 do
10: 𝑝𝑒𝑟𝑚_𝑝𝑎𝑡𝑐ℎ𝑒𝑠 ← shuffle 𝑝𝑎𝑡𝑐ℎ𝑒𝑠 using a random permutation

from 𝑝𝑒𝑟𝑚𝑠

11: append 𝑝𝑒𝑟𝑚_𝑝𝑎𝑡𝑐ℎ𝑒𝑠 to 𝑝𝑢𝑧𝑧𝑙𝑒𝑠

12: return 𝑝𝑢𝑧𝑧𝑙𝑒𝑠

3.3.2 Puzzle-Solving with Sinkhorn Networks
To efficiently solve the self-supervised jigsaw puzzle task, we train a network that

can learn a permutation. A permutation matrix of size 𝑁 × 𝑁 corresponds to some

permutation of the numbers 1 to 𝑁 . Every row and column, therefore, contains

precisely a single 1 with 0s everywhere else, and every permutation corresponds

to a unique permutation matrix. This permutation matrix is non-differentiable.

35



Chapter 3 Self-supervision from Multimodal Medical Images

However, as shown in [Men+18], the non-differentiable parameterization of a

permutation can be approximated in terms of a differentiable relaxation, the so-

called Sinkhorn operator. The Sinkhorn operator iteratively normalizes rows and

columns of any real-valued matrix to obtain a “soft” permutation matrix, which is

doubly stochastic. Formally, for an arbitrary input 𝑋 , which is an 𝑁 dimensional

square matrix, the Sinkhorn operator 𝑆 (𝑋 ) is defined as:

𝑆0(𝑋 ) = 𝑒𝑥𝑝 (𝑋 ),
𝑆𝑖 (𝑋 ) = T𝑅 (T𝐶 (𝑆𝑖−1(𝑋 ))),
𝑆 (𝑋 ) = lim

𝑖→∞
𝑆𝑖 (𝑋 ).

(3.1)

where T𝑅 (𝑋 ) = 𝑋 ⊘ (𝑋1𝑁1⊤𝑁 ) and T𝐶 (𝑋 ) = 𝑋 ⊘ (1𝑁1⊤𝑁𝑋 ) are the row and column

normalization operators, respectively. The element-wise division is denoted by ⊘,
and 1⊤

𝑁
∈ ℕ𝑁 is an 𝑁 dimensional vector of ones.

Assuming an input set of patches 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑁 }, where 𝑃 ∈ ℝ𝑁×𝑙×𝑙
repre-

sents a puzzle that consists of 𝑁 square patches, and 𝑙 is the patch length. We pass

each element in 𝑃 through a network𝐺 , which processes every patch independently

and produces a single output feature vector with length 𝑁 . By concatenating to-

gether these feature vectors obtained for all region sets, we obtain an 𝑁 ×𝑁 matrix,

which is then passed to the Sinkhorn operator to obtain the soft permutation matrix

𝑆 . Formally, the network 𝐺 learns the mapping 𝐺 : 𝑃 → 𝑆 , where 𝑆 ∈ [0, 1]𝑁×𝑁
is the soft permutation matrix, which is applied to the scrambled input 𝑃 to re-

construct the image 𝑃𝑟𝑒𝑐 . The network 𝐺 is then trained by minimizing the mean

squared error (MSE) between the sorted ground-truth 𝑃∗ and the reconstructed

version 𝑃𝑟𝑒𝑐 of the scrambled input, as in the loss formula below:

L𝑝𝑢𝑧𝑧𝑙𝑒 (𝜃, 𝑃, 𝑃∗) =
𝐾∑︁
𝑖=1




𝑃∗𝑖 − 𝑆𝑇𝜃,𝑃𝑖 .𝑃𝑖


2, (3.2)

where 𝜃 corresponds to the network parameters, and 𝐾 is the total number of train-

ing puzzles. After obtaining the network parameters 𝜃 , the yielded representations

capture different tissue structures across the given modalities as a consequence

of the multimodal puzzle solving. Therefore, the learned representations can be

employed in downstream tasks by a simple fine-tuning on target domains, in an

annotation-efficient regime. Our proposed approach is depicted in Fig. 3.2.
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Generator
MR (T2)CT

Figure 3.3: A cross-modal generation example on abdominal scans from CT to MR (T2)

modalities. Here, 𝐺 is a generator model between these modalities. The scans are from the

CHAOS [Kav+19] dataset. Figure source [Tal+21], reprinted with permission.

3.3.3 Cross-Modal Generation
Multimodal medical images exist in several curated datasets, and in pairs of aligned

(or registered) scans. However, as described before, in many real-world scenarios,

obtaining such data in large quantities can be challenging. To address this, we add

an explicit cross-modal generation step using CycleGAN [Zhu+17], illustrated in

Fig. 3.3. This model also uses a cycle-consistency loss, which allows for relaxing

the alignment (pairing) constraint across the two modalities. Therefore, CycleGAN

can translate between any two imaging modalities, requiring no prior expensive

registration steps. This step allows us to leverage the richness of multimodal

representations obtained by our proposed puzzle-solving task. In our scenario,

after generating data samples of the small (in number of samples) modality using

samples from the larger modality, we construct our multimodal puzzles using a mix

of real and generated multimodal data. As we show in our experiments, this yields

better representations compared to using a single modality only when creating

puzzles. We have to highlight that, our multimodal puzzles are capable of operating

on realistic multimodal images merely, which are the results shown in Sec. 3.4.2.

However, we assess the influence of mixing those realistic multimodal images with

synthetic ones in Sec. 3.4.3.

3.4 Experimental Results
In the following sections, we assess the quality of representations learned with

our proposed pretraining method on multimodal medical imaging datasets detailed

in Sec. 3.4.1. We transfer (and fine-tune) the learned representations to different

downstream tasks, and measure their impact in Sec. 3.4.2. Then, we study the effect

of integrating generated synthetic data in constructing our multimodal puzzles in
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Sec. 3.4.3. Next, we assess how our self-supervised task affects the downstream

tasks’ data efficiency, i.e. when operating in a low-data regime, in Sec. 3.4.4. Finally,

we analyze the effect of many variables (puzzle complexity and permutation list

size) in our multimodal puzzles on downstream task performance in a set of ablation

studies in Sec. 3.4.5.

3.4.1 Datasets

In our experiments, we consider three multimodal medical imaging datasets. The

first is the Multimodal Brain Tumor Image Segmentation Benchmark (BraTS)
dataset [Bak+17; Men+15]. This dataset is widely used to benchmark different

semantic segmentation algorithms in the medical imaging domain. It contains

multimodal MRI scans for 285 training cases and for 66 validation cases. All

BraTS scans include four MRI modalities per case: a) native (T1), b) post-contrast

T1-weighted (T1Gd), c) T2-weighted (T2), and d) T2 Fluid Attenuated Inversion

Recovery (T2-FLAIR) volumes. The BraTS challenge involves two different tasks: i)

brain tumor segmentation, and ii) number of survival days prediction.

The second benchmark is the Prostate segmentation task from the Medical

Segmentation Decathlon [Sim+19a]. The prostate dataset consists of 48 multimodal

MRI cases, fromwhich 32 cases are for training, and 16 are for testing. Ground-truth

segmentations of the whole prostate were produced from T2-weighted scans, and

the apparent diffusion coefficient (ADC) maps. The downstream task is segmenting

two adjoint prostate regions (the central gland and the peripheral zone).

The third benchmark is the Liver segmentation task from the CHAOS [Kav+19]

multimodal dataset. The CHAOS dataset contains 40 multimodal cases, from which

20 cases are used for training, and 20 for testing. This dataset consists of CT and

MRI multimodal data, where each case (patient) has one CT and one MRI scans.

The CT and MR modalities in this benchmark are not only different in appearance,

but also they are non-registered, making this dataset a pertinent test-bed for our

multimodal puzzles.

3.4.2 Transfer Learning Results

We evaluate the quality of the learned representations from our task of multimodal

puzzle-solving by transferring them in downstream tasks. Then, we assess their

impact on downstream performance. As mentioned before, we only use realistic
data in the experiments presented in this section.
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Brain Tumor Segmentation

The goal of this task is to segment 3 different regions of brain tumor: a) the whole

tumor (WT), b) the tumor core (TC), and c) the enhanced tumor (ET). Each of these

regions has different characteristics, and each may appear more clearly on specific

MRI modalities than others, justifying the need for multiple modalities.

Baselines In order to assess the quality of our representations, we establish the

following baselines. Apart from the Single-modal baseline, all of the following
baselines use multimodal data. To average out random variations and compute

p-values, we used a 5-fold cross validation evaluation approach. For each fold, we

used the same training and test datasets for our method and all baselines to perform

a one-sided two-sample t-test on the dice scores, following [Kum+20].

From Scratch: The first sensible baseline for all self-supervised methods is

to compare with the model when trained on the downstream task from scratch.

This baseline provides an insight into the benefits of self-supervised pretraining

(initialization), as opposed to learning the target task directly.

Single-modal: We study the impact of our pretraining method on this task when

processing only a single modality as input. This experiment aims at simulating the

realistic situation when human experts examine brain scans, as some modalities

highlight certain aspects of the tumor more than others. For instance, Flair is

typically used to examine the whole tumor area, while T2 is used for tumor core,

and the T1ce highlights the enhanced tumor region. We select the best modality

for each task when comparing to these results.

Isensee et al. [Ise+18]: This work ranks among the tops in the BraTS 2018

challenge. It uses additional datasets next to the challenge data, and it performs

multiple types of augmentation techniques. The model architecture is a 3D U-

Net [RFB15]. We only fine-tune our learned representations from the self-supervised

task, thus requiring much less data and augmentation methods. 2D Isensee is a
2D version of their network, which we implement for better comparability.

Chang et al. [Cha+18b]: Trained multiple versions of the 2D U-Net models, and

used them as an ensemble to predict segmentationmasks. This requires significantly

more computing time and resources than training a single model that performs the

task with higher performance in many cases.

Li [Li18]: Implemented a 3-stage cascaded segmentation network that combines

whole-tumor, tumor-core and enhanced-tumor masks. For the whole-tumor stage,

they utilize a modified multi-view 2D U-Net architecture, which processes three

slices at a time from input 3D scans: axial, sagittal, and coronal views. Our method

produces better results while requiring less computations using a smaller network.
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JiGen [Car+19]: This method is a multi-tasking approach called JiGen [Car+19].

JiGen solves jigsaw puzzles as a secondary task for domain generalization. We

implemented their model and treated the multiple modalities as if they were other

domains. This baseline aims to analyze the benefits of performing modality confu-

sion on the data-level (our approach), as opposed to the feature-level (JiGen).

Models Genesis [Zho+19b]: This is a self-supervised method that relies on

multiple image reconstruction tasks to learn from unlabeled scans. Even though

their method is mainly implemented in 3D, we employ the 2D version (2D MG) of
their model

1
(pretrained on Chest-CT), for better comparability.

Rubik Cube [Zhu+19]: A self-supervised method that relies on solving 3D

jigsaw puzzles as a proxy task, and also applies random rotations on puzzle cubes.

Similarly, we compare to the 2D version (2D RC) for better comparability.

Evaluation Metrics The reported metrics are the average dice scores for the

Whole Tumor (WT), the Tumor Core (TC), and the Enhanced Tumor (ET).

Discussion The results of our multi-modal method compared to the above

baselines are shown in Tab. 3.1. Our proposed method outperforms both the "from

scratch" and "single-modal" baselines, confirming the benefits of pretraining using

our multimodal approach. In addition, our method achieves comparable results to

methods from literature. We outperform these baselines in most cases, such as the

methods Chang et al. [Cha+18b], and Li [Li18], in terms of all reported dice scores.

We also report the result of a 2D version (for better comparability) of Isensee et
al. [Ise+18], which ranks among the best results on the BraTS 2018 benchmark.

Even though their method uses co-training with additional datasets and several

augmentation techniques, we outperform their results in this task. This supports

the performance benefits of initializing CNNs with our multimodal puzzles. We

also compare with 2D Models Genesis (2D MG) [Zho+19b], which we outperform

in this downstream task, supporting the effectiveness of our pretraining method.

Compared to 2DRubik Cube [Zhu+19], whichwe implement in 2D for comparability,

we observe that we outperform this method in this task. This confirms the higher

quality of the representations learned by ourmethod, compared to this jigsaw puzzle

solving method (including random rotations). Compared to the work of [Car+19]

(JiGen), we also find that our results outperform this baseline, confirming that our

approach of performing the modality confusion in the data-level is superior to

modality confusion in the feature-level.

1 It uses Resnet18 as the encoder of the U-Net architecture implemented here: https://github.com/

qubvel/segmentation_models
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Table 3.1: Results on the BraTS segmentation task

Model ET WT TC p-value

From scratch 68.12 80.54 77.29 3.9𝑒-5

Single-modal 78.26 87.01 82.52 6.0𝑒-4

Li [Li18] 73.65 88.24 78.56 9.0𝑒-4

Chang et al. [Cha+18b] 75.90 89.05 82.24 2.6𝑒-3

2D MG [Zho+19b] 79.21 88.82 83.60 7.6𝑒-2

2D Isensee et al. [Ise+18] 78.92 88.42 83.73 4.6𝑒-2

2D RC [Zhu+19] 78.38 87.16 82.92 1.4𝑒-2

JiGen [Car+19] 78.75 88.15 83.32 5.0𝑒-4

Ours (Multi-modal) 79.65 89.74 84.48 -

Prostate Segmentation

The target of this task is to segment two regions of the prostate: central gland, and

peripheral zone. This task utilizes two available MRI modalities.

Baselines We establish the following baselines, which, apart from Single-modal,
all use multimodal data. To average out random variations and compute p-values,
we used a 5-fold cross validation evaluation approach. For each fold, we used

the same training and test datasets for our method and all baselines to perform a

one-sided two-sample t-test on the dice scores, following [Kum+20].

From Scratch: Similar to the first downstream task, we compare to the same

model architecture when training on the prostate segmentation task from scratch.

Single-modal: We also study the impact of our method when using only a single

modality (T2) to create the puzzles.

JiGen [Car+19]: Similar to the first downstream task, we compare our method

to the multi-tasking approach JiGen.

2D Models Genesis [Zho+19b] (2D MG): Similar to the first task, we fine-tune

this model on multimodal Prostate data.

2D Rubik Cube [Zhu+19] (2D RC): Similar to the first task, we fine-tune the

2D version of this method on multimodal prostate data.

Evaluation Metrics We report the values of two evaluation metrics in this task,

the average dice score (Dice) and the normalized surface distance (NSD). These

metrics are used on the official challenge. The metrics are computed for the two

prostate regions (Central and Peripheral).
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Table 3.2: Results on the Prostate segmentation task

Model

Dice NSD

p-value
C P C P

From scratch 68.98 86.15 94.57 97.84 4.9𝑒-3

Single-modal 69.48 87.42 92.97 97.21 9.3𝑒-5

2D MG [Zho+19b] 73.85 87.77 94.61 98.59 4.3𝑒-2

2D RC [Zhu+19] 73.11 86.14 93.65 97.47 3.1𝑒-2

JiGen [Car+19] 69.98 86.82 92.67 96.13 9.1𝑒-3

Ours (Multi-modal) 75.11 88.79 94.95 98.65 -

Discussion The results of our multi-modal method compared to the above

baselines are shown in Tab. 3.2. Our proposed method outperforms both "from

scratch" and "single-modal" baselines in this task, too, supporting the advantages

of pretraining the segmentation model using our multimodal approach. We also

compare with 2D Models Genesis (2D MG) [Zho+19b], which we outperform in

this downstream task, supporting the effectiveness of our pretraining method. Also,

our method outperforms the multitasking method JiGen [Car+19], when trained

on this task too. We observe a more significant gap in performance between our

approach and JiGen in this task, compared to the first downstream task of brain

tumor segmentation. We posit that this can be attributed to the more significant

difference between the imaging modalities used in this prostate segmentation task,

as opposed to those in the brain tumor segmentation task. The Fig. 3.4 shows this

difference more clearly. It can be noted that the imaging modalities of the prostate

dataset, are more different in appearance than those of the brain tumor dataset. This

difference in appearance among the modalities can be explained by understanding

the physics from which these MRI modalities are created. All of the brain MRI

sequences in the BraTS dataset are variants of T1- and T2-weighted scans, they

only differ in configurations of the MRI scanner. These different configurations

cause the contrast and brightness of some brain areas to vary among these MRI

sequences. The ADC map, on the other hand, is a measure of the magnitude of

diffusion (of water molecules) within the organ tissue. This requires a specific

type of MRI imaging called Diffusion Weighted Imaging (DWI). In general, highly

cellular tissues or cellular swellings exhibit lower diffusion coefficients, e.g. a

tumor, a stroke, or in our case, the prostate. Compared to 2D Rubik Cube [Zhu+19],

similarly, we outperform this method on this downstream task.
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Liver Segmentation

The target of this task is to segment the liver from multimodal abdominal scans,

which include CT and MRI modalities.

Baselines Apart from the Single-modal baseline, all of the following baselines

use multimodal data. To average out random variations and compute p-values, we
used a 5-fold cross validation evaluation approach. For each fold, we used the same

training and test datasets for our method and all baselines to perform a one-sided

two-sample t-test on the dice scores, following [Kum+20].

From Scratch: Similar to the first downstream task, we compare our model with

the same architecture when training on liver segmentation from scratch.

Single-modal: We also study the impact of our pretraining method when using

only a single modality to create the puzzles. Here, CT, as it is more abundant.

JiGen [Car+19]: Similar to the first downstream task, we compare our method

to the multi-tasking approach JiGen.

Registered: Because the CT and MR modalities are not registered in this bench-

mark, we register themwhen training this baseline. This aims to assess the influence

of registration on learned representations by our multimodal puzzles. We employ

VoxelMorph [Bal+19]
2
for multimodal image registration.

2D Models Genesis [Zho+19b] (2D MG): Similar to the first task, we fine-tune

this model on multimodal Liver data.

2D Rubik Cube [Zhu+19] (2D RC): Similar to the first task, we fine-tune this

method on multimodal liver data.

EvaluationMetrics We report the results of liver segmentation using the average

dice score (Dice). This metric is used on the official challenge.

Discussion The results of our multimodal method compared to the above

baselines are shown in Tab. 3.3. Our method outperforms both "from scratch" and

"single-modal" baselines in this task too, supporting the advantages of initializing

the model using our multimodal puzzle solving task. We also compare with 2D

Models Genesis (2D MG) [Zho+19b], which we outperform in this downstream

task, supporting the effectiveness of our pretraining method. However, we observe

that our method only marginally outperforms this method, and we believe this

is because Models Genesis was pretrained on Chest CT data. Also, our method

2 Our aim is to benchmark our method against a proven image registration method (VoxelMorph

takes structural information into consideration)
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Table 3.3: Results on the Liver segmentation task

Model Avg. Dice p-value

From scratch 89.98 1.2𝑒-5

Registered 95.09 9.6𝑒-1

Single-modal 92.01 6.3𝑒-3

JiGen [Car+19] 93.18 2.1𝑒-2

2D MG [Zho+19b] 95.01 3.8𝑒-1

2D RC [Zhu+19] 94.15 4.9𝑒-2

Ours (Multi-modal) 95.10 -

outperforms the multitasking method JiGen [Car+19], when trained on this task

too. The results against the "Registered" baseline are almost on par with the results

of our "multimodal" method using non-registered data. This result is significant

because it highlights our multimodal puzzles’ ability to operate on non-registered

imaging modalities. Compared to 2D Rubik Cube [Zhu+19], we outperform this

method on this downstream task too. This confirms that our method is able to learn

better multimodal representations, given the same input modalities.

Survival Days Prediction (Regression)

The BraTS challenge involves a second downstream task, which is the prediction

of survival days. The number of training samples is 60 cases, and the validation set

contains 28 cases. Similar towhatwe did for the other downstream tasks, we transfer

the learned weights of our multimodal puzzle solver model. The downstream task

performed here is regression, hence the output of our trained model here is a single

scalar that represents the expected days of survival. We reuse the convolutional

features, and we add a fully connected layer with five features in it, and then a

single output layer on top. We also include the age as a feature for each subject

right before the output layer. The size of the fully connected layer, was determined

based on the obtained performance, i.e. by hyperparameter tuning.

In Tab. 3.4, we compare our results to the baselines of Suter et al. [Sut+18]. In their
work, they compared deep learning-based methods performances with multiple

other classical machine learning methods on the task of survival prediction. The

first experiment they report is (CNN + age), which uses a 3D CNN. The second is a

random forest regressor, the third is a multi-layer perceptron (MLP) network that

uses a set of hand-crafted features called FeatNet, and finally, a linear regression
model with a set of 16 engineered features. We outperform their results in all cases
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Table 3.4: BraTS survival prediction (regression). The baselines (except for "From scratch")

are taken from [Sut+18]

Model MSE

From scratch 112.841

CNN + age 137.912

Random Forest Regression 152.130

FeatNet + all features 103.878

Lin. Reg. + top 16 features 99.370

Ours (Multi-modal) 97.291

when fine-tuning our puzzle solver model on this task. The reported evaluation

metric is the Mean Squared Error (MSE).

3.4.3 Cross-Modal Generation Results

We investigate in this set of experiments the effect of the cross-modal generation

step. As mentioned earlier, obtaining large multimodal medical imaging datasets

can be sometimes challenging. Therefore, we investigate in this set of experiments,

the effect of the explicit cross-modal generation step. This step allows for better

adoption of our multimodal puzzle-solving, even in the case of a few multimodal

samples only. It is common that some imaging modalities exist in larger quantities

than others. Hence, in this set of experiments, we perform this step in a semi-

supervised fashion, assuming small multimodal and large single-modal data subsets.

The size of the multimodal subset influences the downstream task performance,

and the quality of generated data. We evaluate the generation process at data subset

sizes of 1%, 10%, and 50% of the total number of patients in each benchmark. We

assume a reference modality, which is often abundant in practice, to generate the

other modalities
3
. In the BraTS and Prostate benchmarks, we use T2-weighted

MRI. In the Prostate dataset, we use T2-weighted MRI scans to generate the ADC

diffusion-weighted scans. In BraTS, since we have four MRI modalities, we train

three GANs and convert T2 MRI to the other MRI modalities (T1, T1CE, FLAIR). In

the CHAOS liver benchmark, we use the CT modality to generate T2 MRI.

3 When there is no clear reference modality, it is also possible to generate all modalities from each

other, which results in an increased number of trained GAN models.
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Table 3.5: Results on segmentation in avg. dice scores. The percentages are sizes of

multimodal subsets used to train CycleGAN

Model

BraTS Prostate CHAOS

ET WT TC C P Liver

Single-modal 72.12 82.72 79.61 69.48 87.42 92.01

Downstream training (1%) 65.40 74.11 69.24 55.24 71.23 80.31

Downstream training (10%) 69.28 78.72 71.58 62.65 76.18 83.65

Downstream training (50%) 72.92 81.20 78.36 66.34 80.24 87.58

Our method (1%) 73.12 82.42 80.01 61.87 82.67 82.71

Our method (10%) 74.19 85.71 81.33 67.67 84.37 86.26

Our method (50%) 76.23 87.04 82.38 73.45 87.92 93.85

Discussion. This step is only justified if it provides a performance boost over

the single-modal puzzle solving baseline, i.e. training our model on puzzles that

originate from onemodality. Wemeasure the performance on the three downstream

tasks, by fine-tuning these models and then evaluating them on segmentation. The

presented results in Tab. 3.5 clearly show an improvement on all benchmarks, when

training our puzzle solver on the mixture of synthetic and realistic multimodal

data. Even when we use only 1% of the total dataset sizes, the generator appears to

capture the important characteristics of the generated modality. The qualitative

results in Fig. 3.4, confirm the quality of generated images. In addition, we study

the benefits of using the synthetic data for self-supervised pretraining, instead of

training the downstream task directly on them. The results of Our method in

Tab. 3.5 support this approach, as opposed to direct Downstream training.

3.4.4 Low-Shot Learning Results

In this set of experiments, we assess how our self-supervised task benefits the data-

efficiency of the trainedmodels, bymeasuring the performance on both downstream

segmentation tasks at different labeling rates by fine-tuning our pre-trained model

with corresponding sample sizes. We randomly select subsets of patients at 1%, 10%,

50%, and 100% of the total segmentation training set size. Then, we fine-tune our

model on these subsets for a fixed number of epochs (50 epochs each). Finally, for

each subset, we compare the performance of our fine-tunedmultimodal model

to the baselines trained from scratch and single-modal. As shown in Fig. 3.5,

our method outperforms both baselines with a significant margin when using few
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Figure 3.4: Qualitative results of the trained CycleGAN at different multimodal subset sizes

(at 1%, 10%, and 50% of the full dataset). For BraTS, we convert scans from T2 to FLAIR, T2

to ADC for Prostate, and CT to MR-T2 for CHAOS liver. Despite using small multimodal

subsets, the quality of synthetic images is high. The target images of the CHAOS liver

dataset are obtained by registration. Source [Tal+21], reprinted with permission.
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Figure 3.5: Results in the low-shot scenario. Ourmethod outperforms both single-modal
and from scratch baselines, confirming the benefits in data-efficiency when pretraining

using our multimodal puzzles. Figure source [Tal+21], reprinted with permission.

training samples. This gap to the single-modal baseline confirms the benefits

of using our multimodal puzzles instead of traditional single-modal puzzles. In a

low-data regime of as few samples as 1% of the overall dataset size, the margin to the

from scratch baseline appears larger. This case, in particular, suggests the potential

for generic unsupervised features applicable to relevant medical imaging tasks.

Such results have consequences on annotation efficiency, i.e. only a fraction of data

annotations is required. It is worth noting that we report these low-shot results

on realistic multimodal data. The single-modal baseline uses these modalities for

each task: FLAIR for BraTS, T2 for Prostate, and CT for Liver.

3.4.5 Ablation Study
We use realistic data only in the experiments presented in this section.

Puzzle Complexity

In this set of experiments, we analyze the impact of the complexity of our multi-

modal jigsaw puzzles in the pretraining stage, on the performance of downstream

tasks. This aims to evaluate whether the added complexity in this task can result in

more informative data representations; as the model is enforced to work harder

to solve the more complex tasks. Our results confirm this intuition, as shown in

Fig. 3.6 (Left), where, in general, the downstream task performance (measured in

Dice Score) increases as the puzzle complexity rises. This is true up to a certain

point, at which we observe that the downstream performance almost flattens. This

complexity turning point is different across the three downstream tasks, as can be
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Figure 3.6: (Left) Puzzle complexity vs. downstream performance. The trendlines suggest

more complex jigsaw puzzles improve downstream performance, up to a certain point where

added complexity has little effect. (Right) Permutation set size vs. downstream performance.

The plot shows that a larger set than a certain size has little influence on downstream

performance, but a small set affects the results negatively. Figure source [Tal+21], reprinted

with permission.

seen in Fig. 3.6 (Left). We should note that in all previous experiments, we use 5× 5
puzzle complexity for BraTS tasks, and 7 × 7 for Prostate and Liver.

Permutation Set Size

In this set of experiments, we analyze the impact of the permutation list size used

in creating multimodal jigsaw puzzles, on the performance of downstream tasks.

This hyperparameter can be viewed as another form of puzzle complexity [NF16].

However, as mentioned before, our design choice to utilize the efficient Sinkhorn

operator for puzzle solving captures the whole set of possible permutations. The

main reason lies in solving the task as permutation matrix inference (regression), in-

stead of permutation classification used in other solutions [Car+19; NF16; Zhu+19].

Consequently, our puzzle solver is expected to reduce the influence of the permuta-

tion list size on trained models. Nevertheless, in practice, we sample from a finite

permutation set, for feasibility reasons, and we attempt to employ a permutation set

as large as possible. Our intuition here is that a larger permutation set can facilitate

learning a better semantic representation. Hence, in this set of experiments, we
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analyze the effect of the chosen permutation set size. Fig. 3.6 (Right) shows the

downstream performance for every permutation set size. It is worth noting that in

this plot, we use a 3-by-3 puzzle complexity, which results with 9! total permuta-

tions. We vary the permutation set size from 10
2
to 3 × 105, which is almost equal

to 9!. The trendlines in the plot show that a small permutation set, e.g. 100 or 1000,

can harm the learned representations, as the model may overfit this small set of

permutations. It also shows that an increase in permutation set size has a positive

effect on downstream performance, similar to puzzle complexity. Nevertheless, the

influence of permutation set size becomes negligible after a certain limit, as appears

in the Fig. 3.6. This is consistent with the effect of varying puzzle complexity. We

should highlight that the actual number of permutations grows with the number

of modalities in each downstream task, as explained in Sec. 3.3.1. However, since

our method learns cross-modal representations, it allows for cancelling out this

exponential growth with more modalities.

Across both ablations presented in this section (for puzzle complexity and permu-

tation set size), we observe a consistent behavior, even though the actual numbers

may differ. This behavior is that both hyperparameters improve downstream per-

formance as they increase, up to a certain limit, where their variation causes a

negligible change in performance then. We believe that the model capacity here

is the cause of such saturation, which is consistent with the findings of Goyal

et al. [Goy+19]. Employing a larger model architecture may benefit more from

increased complexity in our multimodal puzzles.

3.5 Discussion
In this chapter, we proposed a multimodal self-supervised Jigsaw puzzle-solving

task. This approach allows for learning rich semantic representations that facili-

tate downstream task solving in the medical imaging context. In this regard, we

showed competitive results to the state-of-the-art results in three medical imaging

benchmarks. One of which has unregistered modalities, further supporting the

effectiveness of our approach in producing rich data representations. The proposed

multimodal puzzles outperform their single-modal counterparts, confirming the

advantages of including multiple modalities when constructing jigsaw puzzles. It is

also noteworthy that the efficient Sinkhorn operator enabled large permutation sets

and puzzle complexities, an aspect commonly used puzzle solvers do not offer. In

addition, our approach further reduces the cost of manual annotation required for

downstream tasks, and our results in the low-data regime support this benefit. We

also evaluated a cross-modal translation method as part of our framework, which
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when used in conjunction with our method, it showed performance gains even

when using few multimodal samples to train the generative model. We provide

additional training details in Appendix A.
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4 Self-supervision from
3D Medical Scans

This chapter extends own work in [Tal+20], published in the Proceedings of the

Neural Information Processing Systems Conference (NeurIPS 2020). It also includes

results from a supervised master’s thesis, whose results are summarized in the

following pre-print [Ali+21].

4.1 Introduction

Advancements in 3D sensing technologies have improved their adoption in multi-

ple application fields, such as in Autonomous Driving, Robotic Navigation, CAD

imaging, Virtual/Augmented Reality, and Medical Imaging. This wide spread of

3D technologies have prompted the development of Computer Vision algorithms

that can extract meaningful information from 3D data. As a result, many works

have relied on Deep Learning methods to extract rich semantic representations

from 3D inputs [GB19; Ioa+17; Su+17], which have been successfully deployed in

self-driving cars [Li+20]. In this chapter, we develop deep self-supervised learning

algorithms for 3D input data, for which we use Medical Imaging as a test-bed.

Nevertheless, we ensure their design allows generalization to other 3D domains.

As described in earlier chapters, medical imaging plays a vital role in patient

healthcare, yet efforts to utilize advancements in Deep Learning are often hampered

by the sheer expense of the expert annotation required. This becomesmore apparent

with 3D medical scans, where expert annotation at scale is even more expensive

©CC-BY 2.0
(a) Example scan of 3D Brain MRI. Source:

[Bar+11]

©CC-BY 2.0
(b) View axes (Axial, Coronal, and Sagittal,

from left to right). Source: [Pad+20]

Figure 4.1: Showing how a 3D scan (a) is projected on three view axes (b).
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and time-consuming. Hence, learning from unlabeled 3D medical scans with

self-supervised learning methods is expected to alleviate the manual annotation

burden. Unlabelled medical scans carry valuable information about organ and

tissue structures, and self-supervised methods enable the models to derive notions

about these structures.

Despite the surge of interest in self-supervised learning algorithms for represen-

tation learning, only little attention has been paid to 3D nature of many medical

imaging modalities [EM11]. Typically, 3D imaging tasks are cast in 2D by extracting

slices along an arbitrary axis, e.g. the axial, which is a sub-optimal solution that

compromises the performance on downstream tasks. Fig. 4.1 (a) shows an example

3D brain scan, and Fig. 4.1 (b) shows the different 2D planes (axes or views) on

which this scan may be projected. No matter which axis is used to project the scan

in the form of 2D slices, it will incur information loss compared to when the full

3D context is used. Therefore, we believe that employing the full 3D spatial context

can substantially benefit the performance in downstream tasks, as it captures the

anatomical information better.

In this chapter, we present six different self-supervised tasks that aim to take

advantage of the full 3D spatial context from input medical scans. Our methods

facilitate neural network representation learning from unlabeled 3D images, hence

reducing the required cost for manual expert annotation. These proposed proxy

tasks are: 3D Contrastive Predictive Coding, 3D SimCLR, 3D Rotation prediction,

3D Jigsaw puzzles, Relative 3D patch location, and 3D Exemplar networks. To the

best of our knowledge, these algorithms have never been applied on 3D inputs,

including on 3D medical scans. Nevertheless, as detailed earlier in Sec. 2.3, the 2D

versions of these algorithms are successful in learning data representations from

2D natural images. We perform extensive experiments to evaluate the quality of

the learned semantic representations in three different downstream tasks from four

dataset benchmarks. The experimental results show that our 3D tasks learn rich data

representations by improving the data-efficiency and performance on downstream

tasks. More importantly, our experimental results support that pretraining with our

proposed 3D algorithms yields more powerful semantic representations compared

to pretraining on 2D slices.

Naturally, few computational and methodological challenges arise when operat-

ing on 3D inputs, due to the increased data dimensionality, which we make sure to

address when designing and implementing
4
our self-supervised tasks. We provide

the details in each respective algorithm in the methods section.

4 https://github.com/HealthML/self-supervised-3d-tasks

54



Related work Section 4.2

4.2 Related work

Works that employ Deep Learning algorithms on 3D input data are numerous [GB19;

Guo+20; Ioa+17; Li+20; Su+17], and they have been applied to several application

fields. Examples applications include Autonomous Driving with Lidar inputs,

Robotics with 3D point cloud inputs, Video data with temporal information as a

third dimension, Medical domain with 3D scans, and many more. In this section,

however, we focus on self-supervised tasks that learn from volumetric 3D data,

similar to medical scans.

Self-supervision from Videos. Videos are rich with several supervisory sig-

nals [PG16b; Von+18; VPT15; WG15a; WGH15] for self-supervised tasks. For

instance, one may employ the temporal information across the scene frames be-

sides the spatial context in each frame (image). In this paragraph, we discuss a

subset of these works that use 3D-CNNs to process the videos. To that end, 3D-

CNNs are usually employed to simultaneously extract the spatial features from

each frame, and the temporal features across multiple frames. Here, the frames are

typically stacked along the 3
rd
(depth) dimension of the 3D-CNN. This scheme of

exploiting 3D convolutions for video inputs was first proposed in [Ji+13] for human

action recognition, and was later extended to other application types [JT20]. In

self-supervised learning, however, the number of tasks that use 3D convolutions is

limited. Kim et al. [DCK19] proposed a task that solves "cubic" puzzles of 2 × 2 × 1
created from videos, yet the 3

rd
depth dimension is not actually employed in puzzle

creation. Jing et al. [JT18] extended the rotation prediction task [GSK18] to video

inputs, by stacking the frames along the depth dimension. Nevertheless, the latter

dimension is essentially not used in rotation operations, since only spatial rotations

are considered. On the other hand, in our proposed versions of 3D Jigsaw puzzles

and 3D Rotation prediction, respectively, we exploit the depth (3
rd
) dimension

effectively. For instance, we solve larger 3D puzzles (up to 3 × 3 × 3), and we also

predict more rotations along all axes in the 3D space. Generally, we believe that

the different nature of the data, i.e. stacked video frames versus 3D volumetric

scans in our case, affects the design of the respective proxy tasks. In other words,

the 3
rd
depth dimension has an actual meaning in volumetric scans. Therefore, we

consider the full 3D spatial context in the design of all our tasks in order to learn

the rich anatomical information from unlabeled volumetric scans.

Self-supervision from 3Dmedical scans. In a more related set of works, Zhou

et al. [Zho+19b] proposed to employ image reconstruction on 3D medical scans

as a source of self-supervision. Zhuang et al. [Zhu+19] and Zhu et al. [Zhu+20a]
developed a proxy task that solves small 2 × 2 × 2 jigsaw puzzles. Contrarily, our
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Figure 4.2: 3D-CPC: each input image is split into 3D patches, and the latent representations

𝑧𝑖+1, 𝑗,𝑘 , 𝑧𝑖+2, 𝑗,𝑘 of next patches 𝑥𝑖+1, 𝑗,𝑘 , 𝑥𝑖+2, 𝑗,𝑘 are predicted using the context vector 𝑐𝑖, 𝑗,𝑘 .

The considered context is the current patch 𝑥𝑖, 𝑗,𝑘 , plus the above patches that form an

inverted pyramid.
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Figure 4.3: 3D-SimCLR: input volumes are split into 3D patches. Then, positive samples
are created for each anchor patch. The remaining patches from other volumes are used

as negative samples. The latent representations of positive samples 𝑧𝑖 , 𝑧 𝑗 are attracted

together in the embedding space, and repelled from the embeddings of negative samples

{𝑧𝑘 }.

version of 3D Jigsaw puzzles may efficiently solve larger puzzles of 3 × 3 × 3, and
hence it can improve the performance on downstream tasks.

4.3 Methods

The methods we present in this section are all 3D self-supervised tasks, which learn

semantic data representations from unlabeled 3D scans. The learned representations

are all stored in the form of neural network weights in the resulting encoder

model 𝑔𝑒𝑛𝑐 , allowing for subsequent label-efficient fine-tuning on downstream

benchmarks.
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Figure 4.4: 3D-RPL: assuming a 3D grid of 27 patches (3 × 3 × 3), the model is trained

to predict the location 𝑦𝑞 of the query patch 𝑥𝑞 , relative to the central patch 𝑥𝑐 (whose
location is 13).
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Figure 4.5: 3D-Jig: by predicting the permutation applied to the 3D image when creating a

3 × 3 × 3 puzzle, we are able to reconstruct the scrambled input.
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Figure 4.6: 3D-Rot: the network is trained to predict the rotation degree (out of the 10

possible degrees) applied on input scans.
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Figure 4.7: 3D-Exe: the network is trained with a triplet loss, which drives positive samples

closer in the embedding space (𝑥+𝑖 to 𝑥𝑖 ), and the negative samples (𝑥−𝑖 ) farther apart.

4.3.1 3D Contrastive Predictive Coding (3D-CPC)

Contrastive learning approaches have found recent success in unsupervised repre-

sentation learning tasks, as described earlier in Sec. 2.3.2. Contrastive methods are

a family of algorithms, which at their core all use negative sampling techniques to

train the model. Negative sampling was first employed in the Noise Contrastive Es-

timation (NCE) [GH10] algorithm, and it made learning word representations from

the context of the sentence and given a large vocabulary list more tractable [Mik+13].

Contrastive Predictive Coding (CPC) [Hen20; OLV18] is an example of the con-

trastive methods family. This universal technique learns by predicting the latent

representations for future, e.g. next or adjacent, samples. CPC has been applied

to 1D Audio Signals [OLV18], and to 2D Natural Images [Hen20; OLV18]. Our

proposed CPC algorithm, illustrated in Fig. 4.2, generalizes this technique to 3D

image inputs, hence the naming 3D-CPC.

The first step of the algorithm is cropping each input 3D scan to equally-sized

and overlapping 3D patches. Then, the encoder model being trained 𝑔𝑒𝑛𝑐 maps each

patch 𝑥𝑖, 𝑗,𝑘 to its latent representation 𝑧𝑖, 𝑗,𝑘 = 𝑔𝑒𝑛𝑐 (𝑥𝑖, 𝑗,𝑘). Next, the latent vectors of
the patches are processed by a subsequent model called the context network 𝑔𝑐𝑥𝑡 .
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The latter network aims to summarize the contents of the patches in the context of

𝑥𝑖, 𝑗,𝑘 and produce the context vector 𝑐𝑖, 𝑗,𝑘 = 𝑔𝑐𝑥𝑡 ({𝑧𝑢,𝑣,𝑤}𝑢≤𝑖,𝑣,𝑤), where {𝑧} denotes
the set of latent vectors. Finally, since 𝑐𝑖, 𝑗,𝑘 is assumed to capture the high level

content of the context of 𝑥𝑖, 𝑗,𝑘 , it can be used for predicting the latent representations

𝑧𝑖+𝑙, 𝑗,𝑘 of next (adjacent) patches in the same context, where 𝑙 ≥ 0. However, in

order to realize this prediction task, it is cast as an 𝑁 -way classification problem

by utilizing the InfoNCE loss [OLV18], which derives its name from its ability to

maximize the Mutual Information between 𝑐𝑖, 𝑗,𝑘 and 𝑧𝑖+𝑙, 𝑗,𝑘 and the fact that it uses

NCE. In this formulation, the 𝑁 classes are the patches latent representations {𝑧},
among which is one target positive representation and the other 𝑁 − 1 classes are
negative. Formally, the CPC loss can be written as follows:

L𝐶𝑃𝐶 = −
∑︁
𝑖, 𝑗,𝑘,𝑙

log𝑝 (𝑧𝑖+𝑙, 𝑗,𝑘 | 𝑧𝑖+𝑙, 𝑗,𝑘 , {𝑧𝑛})

= −
∑︁
𝑖, 𝑗,𝑘,𝑙

log

exp(𝑧𝑖+𝑙, 𝑗,𝑘𝑧𝑖+𝑙, 𝑗,𝑘)
exp(𝑧𝑖+𝑙, 𝑗,𝑘𝑧𝑖+𝑙, 𝑗,𝑘) + exp(

∑
𝑛 𝑧𝑖+𝑙, 𝑗,𝑘𝑧𝑛)

(4.1)

This loss corresponds to the categorical cross-entropy loss. The target positive

representation is 𝑧𝑖+𝑙, 𝑗,𝑘 , and {𝑧𝑛} is the list of negative representations. These

negative 3D patches, from which the negative representations are extracted, are

chosen from other random locations in the input scan. In practice, similar to

the original NCE [GH10] formulation, the classification task is solved as a binary
pairwise classification task, in order to make the task more tractable.

The 3D context of each patch 𝑥𝑖, 𝑗,𝑘 resembles an inverted pyramid neighborhood,

which is inspired from [Sto+15; VKK16]. This particular context is chosen based

on a tradeoff between computational cost and performance. Large contexts (e.g.

full surrounding of a patch) incur prohibitive computations and memory use. The

inverted-pyramid context was an optimal tradeoff. It is noteworthy that the pro-

posed 3D-CPC task may employ any network architecture in the encoder 𝑔𝑒𝑛𝑐 and

the context 𝑔𝑐𝑥𝑡 networks. More architecture details in Appendix B.

4.3.2 3D Simple Contrastive Learning of Representations
(3D-SimCLR)

Another more recent successful variant from the contrastive learning family is the

Simple framework for Contrastive Learning of visual Representations (SimCLR)

algorithm. First proposed by Chen et al. [Che+20a], this method was able to ad-

vance the results of self-supervised learning methods to make their performance
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comparable with supervised baselines on the ImageNet [Den+09] benchmark. Sim-

CLR leverages the normalized temperature-scaled cross-entropy loss (NT-Xent)

loss, which at its core also relies on negative sampling [GH10]. However, there

are two main differences to CPC approaches ([Hen20; OLV18] and our 3D variant

proposed in Sec. 4.3.1). In CPC, the processed samples by the encoder are usu-

ally image patches or audio parts derived from the same signals (samples), but

in SimCLR usually full images are processed, thus allowing for capturing larger

context inherently. In CPC, this is solved by using a context aggregation network,

which is required to perform the autoregressive prediction task. In SimCLR, on the

other hand, no autoregressive context network is required, therefore decoupling (or

simplifying) the task to classify positive versus negative samples. Here, the positive

samples are created by employing data augmentation techniques on each sample

in the data batch. Hence, the NT-Xent loss used in SimCLR aims to maximize

the similarity between latent representations of various augmented versions of

the same sample, i.e. the sample and its associated positives. And at the same

time, maximize the dissimilarity to the negative samples, which are augmented

versions of the other samples in the same data batch. In essence, employing various

augmentations improves the learned representations in contrastive methods by

making them invariant to these augmentations.

In this section, we introduce a 3D-SimCLR algorithm, which operates on volu-

metric 3D input images, aiming to capture the full 3D spatial context of the scans.

The first step is sampling a random batch of 𝑀 3D scans. Then, each 3D scan is

split into 𝑃 equally-sized non-overlapping 3D patches resulting in 𝑁 = 𝑀 ∗ 𝑃 input

samples. Before processing the input by the model, two composite augmentations

are randomly chosen from the set of augmentations 𝑇 , and then applied to each

3D patch leading to a dataset size of 2𝑁 samples. Hence, there exists one positive

pair for every input sample, i.e. one pair originating from the same original 3D

patch, and 2(𝑁 − 1) negative pairs, i.e. originating from different 3D patches. It

should be noted here that splitting each 3D scan into a set of 3D patches, in our

3D-SimCLR variant, is motivated by the different nature of 3D images in compari-

son to 2D images. Naturally, 3D images exhibit larger resolutions and hence are

more computationally expensive when considering the whole scan as a sample. In

terms of pretraining with 3D-SimCLR, this entails creating 2𝑁 positive and negative

large samples, deeming the task prohibitively expensive memory and compute

wise. Therefore, splitting each full scan into smaller 3D patches, similar to how our

3D-CPC task is formulated in Sec. 4.3.1, offers an optimal trade-off. It should be

noted however, that in 3D-SimCLR, the positive and negative samples are created

from the 3D patches in the data batch, which can stem from other volumes. As

opposed to 3D-CPC, where these are only derived from each volume separately.
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The training process with 3D-SimCLR, which is illustrated in Fig. 4.3, is as follows.

First, the 2𝑁 samples in the data batch are processed by the encoder network 𝑔𝑒𝑛𝑐
to produce their hidden representations {ℎ𝑛}. Then, a projection head, which is

a non-linear fully-connected (dense) layer 𝑝 (.) is applied to produce the latent

representations of each patch {𝑧𝑛}. This non-linear projection head has been found

useful in obtaining the representations of the samples in [Che+20a]. Afterwards,

the loss function is evaluated. Here, we use the normalized temperature-scaled

cross entropy loss [Che+20a], which takes the set of latent representations {𝑧𝑛} as
inputs. Assuming the representations of a positive pair of 3D patches 𝑧𝑖 and 𝑧 𝑗 and

of a set of negative samples {𝑧𝑘}:

𝑙𝑖, 𝑗 = −𝑙𝑜𝑔
exp(𝑠𝑖𝑚(𝑧𝑖, 𝑧 𝑗 )/𝜏)∑

2𝑁
𝑘=1

1[𝑘≠𝑖] exp(𝑠𝑖𝑚(𝑧𝑖, 𝑧𝑘)/𝜏)
(4.2)

where 𝑠𝑖𝑚 is the cosine similarity and 𝜏 is the temperature parameter. Finally,

the overall NT-Xent loss, which we formalize by L𝑆𝑖𝑚 , is obtained by aggregating

across all the pairs.

Image augmentations or transformations play a crucial role in contrastive learn-

ing methods, including 3D-SimCLR. As mentioned earlier, varying augmentation

types inflicts invariance in the learned representations to these augmentations. In

other words, this helps improve the model generalizability by exposing complicated

patterns in the images. Nevertheless, the choice of augmentation types is rather an

important aspect to avoid introducing structural changes on the image which might

cause deterioration in the model performance. In addition, we find that varying

the types of augmentation allows for accommodating domain knowledge, as we

explore in a subsequent Chapter 6. In this 3D-SimCLR version, we employ the

following augmentations set 𝑇 :

• 3D Rotation: The 3D patch is rotated on a randomly selected axis (𝑥,𝑦, 𝑧)
with a randomly selected degree (90

◦,−90◦, 180◦). Hence, effectively one

random rotation is selected out of 9 possible ones.

• 3D Crop and Resize: A cube is cropped out of the 3D patch at random a

position, then it is resized to the original 3D image size. The size of the cube

is a hyper-parameter. Additionally, the resized image is flipped on the z axis

with 0.5 probability.

• 3D Cut Out: A cube is cropped out of the 3D patch at a random position,

then empty pixels are padded to fill the cropped out area. The size of the

cube is a hyper-parameter.
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• Gaussian Noise: Randomly generated Gaussian noise is added to the image

pixel (here Voxel) intensities.

• Gaussian Blur: The 3D image is blurred using a Gaussian filter.

• Sobel Filter: The edges within the 3D images are emphasized using a Sobel

filter.

• Color Distortion: The 3D image colors are distorted by consecutively ap-

plying a random brightness adjustment and a random contrast adjustment in

a random order.

• Identity: The 3D image remains unchanged.

4.3.3 Relative 3D patch location (3D-RPL)

As one of the earliest self-supervised proxy tasks proposed, relative patch loca-

tion (RPL) prediction [DGE15] utilizes the spatial context in images as a source

of supervision. This task, in fact, is inspired from the skip-gram word2vec algo-

rithm [Mik+13], where the anchor (center) word in a sentence is used to predict its

surrounding words in the context window. In our proposed 3D-RPL algorithm ver-

sion, depicted in Fig. 4.4, we leverage the full 3D spatial context in the design of this

task. In each input 3D image, a grid of 𝑁 non-overlapping 3D patches {𝑥𝑖}𝑖∈{1,..,𝑁 }
is sampled at random locations. Then, the patch 𝑥𝑐 in the center of the grid is used

as a reference, and a query patch 𝑥𝑞 is selected randomly from the surrounding

𝑁 − 1 patches. Next, the location of 𝑥𝑞 relative to 𝑥𝑐 is used as the positive label 𝑦𝑞 .

This casts the task as an 𝑁 − 1-way classification problem, in which the locations

of the remaining grid patches are used as the negative samples {𝑦𝑛}. The process is
repeated to sample pairs of multiple positive examples. Formally, the cross-entropy

loss in this task is written as:

L𝑅𝑃𝐿 = −
𝐾∑︁
𝑘=1

log𝑝 (𝑦𝑞 | 𝑦𝑞, {𝑦𝑛}) (4.3)

where 𝐾 is the number of queries extracted from all samples. In order to prevent

the model from solving this task quickly by finding shortcut solutions, e.g. edge

continuity, we follow [DGE15] in leaving random gaps (jitter) between neighboring

3D patches. More details in Appendix B.
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4.3.4 3D Jigsaw puzzle Solving (3D-Jig)

The relative patch location prediction task has inspired solving Jigsaw puzzles

as a natural extension [NF16] for a self-supervised proxy task. In our proposed

3D Jigsaw puzzle task, which is illustrated in Fig. 4.5, the puzzles are formed by

sampling an 𝑛 × 𝑛 × 𝑛 grid of 3D patches. Then, these 3D patches are shuffled

according to an arbitrary permutation, selected randomly from a set of predefined

permutations. This set of permutations with size 𝑃 is chosen out of the 𝑛3! possible

permutations, by following the Hamming distance based algorithm in [NF16]

(details in Appendix B), and each permutation is assigned an index 𝑦𝑝 ∈ {1, .., 𝑃}.
Therefore, the task is reformulated as a 𝑃-way classification problem, i.e. the model

is trained to simply recognize the applied permutation index 𝑝 . This allows solving

the 3D Jigsaw puzzles in a computationally efficient manner. Formally, we minimize

the cross-entropy loss of L𝐽𝑖𝑔 (𝑦𝑘𝑝 , 𝑦𝑘𝑝 ), where 𝑘 ∈ {1, .., 𝐾} is an arbitrary 3D puzzle

from the list of extracted 𝐾 puzzles. Similar to 3D-RPL, we use the trick of adding

random jitter in 3D-Jig.

4.3.5 3D Rotation prediction (3D-Rot)

Rotation prediction is one of the intuitive proxy tasks, for which the supervision

labels for the self-supervision pretraining stage are obtained simply by predicting

the angle of rotation applied artificially on input images. Originally proposed by

Gidaris et al. [GSK18], the rotation prediction task encourages the model to learn

visual representations that are invariant to the rotation transformation. In our

proposed 3D Rotation prediction task, input 3D images are rotated randomly by

a random degree 𝑟 ∈ {1, .., 𝑅} out of the 𝑅 considered degrees. In this task, for

simplicity, we consider the multiples of 90 degrees (0
◦
, 90
◦
, 180

◦
, 270

◦
, along each

axis of the 3D coordinate system (𝑥,𝑦, 𝑧). There are 4 possible rotations per axis,
amounting to 12 possible rotations. However, rotating input scans by 0

◦
along

the 3 axes will produce 3 identical versions of the original scan, hence, we simply

consider 10 rotation degrees. Therefore, in this setting, the 3D rotation prediction

task is solved as a 10-way classification problem, as shown in Fig. 4.6. Formally,

we minimize the cross-entropy loss L𝑅𝑜𝑡 (𝑟𝑘 , 𝑟𝑘), where 𝑘 ∈ {1, .., 𝐾} is an arbitrary

rotated 3D image from the list of 𝐾 rotated images. It is noteworthy that we create

multiple rotated versions for each 3D image.
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4.3.6 3D Exemplar networks (3D-Exe)

The task of Exemplar networks, proposed by Dosovitskiy et al. [Dos+14] derives
supervision labels using image augmentation techniques, i.e. transformations. This

task, in particular, is viewed in literature to have inspired the family of contrastive

algorithms, such as [Che+20a; Gri+20; He+20]. The core idea here is that this

line of algorithms employs image transformations (augmentations) as a source of

supervision, aiming to learn transformation-invariant data representations. In the

original formulation of exemplar networks, the task is cast as a classification task.

Assuming a training set of 𝑋 = {𝑥1, ...𝑥𝑁 }, and a set of 𝐾 image transformations

T = {𝑇1, ..𝑇𝐾 }, a new surrogate class 𝑆𝑥𝑖 is created by transforming each training

sample 𝑥𝑖 ∈ 𝑋 , where 𝑆𝑥𝑖 = T𝑥𝑖 = {𝑇𝑥𝑖 | 𝑇 ∈ T }. However, this classification task

becomes prohibitively expensive as the dataset size grows larger, as the number of

classes grows accordingly, since each class represents a sample and its augmented

versions. Thus, in our proposed 3D version of Exemplar networks, shown in Fig. 4.7,

we employ a different mechanism that relies on the triplet loss instead [WG15b].

Formally, assuming 𝑥𝑖 is a random training sample and 𝑧𝑖 is its corresponding

embedding vector, 𝑥+𝑖 is a transformed version of 𝑥𝑖 (seen as a positive example)

with an embedding 𝑧+𝑖 , and 𝑥
−
𝑖 is a different sample from the dataset (seen as

negative) with an embedding 𝑧−𝑖 . The triplet loss is written as follows:

L𝐸𝑥𝑒 =
1

𝑁𝑇

𝑁𝑇∑︁
𝑖=1

max{0, 𝐷 (𝑧𝑖, 𝑧+𝑖 ) − 𝐷 (𝑧𝑖, 𝑧−𝑖 ) + 𝛼} (4.4)

where 𝐷 (.) is a pairwise distance function, for which we use the 𝐿2 distance,

following [SKP15]. 𝛼 is a margin (gap) that is enforced between positive and

negative pairs, which we set to 1. The triplet loss enforces 𝐷 (𝑧𝑖, 𝑧−𝑖 ) > 𝐷 (𝑧𝑖, 𝑧+𝑖 ), i.e.
the transformed versions of the same sample (positive samples) to come closer to

each other in the learned embedding space, and farther away from other (negative)

samples.

In terms of 3D transformations used to create the positive and negative samples,

we apply: random flipping along an arbitrary axis, random rotation along an

arbitrary axis, random brightness and contrast, and random zooming.

It is noteworthy that by replacing the triplet loss with a contrastive loss [GH10]

converts the Exemplar networks algorithm to SimCLR [Che+20a]. In other words,

the triplet loss can be seen as a special case of the contrastive loss, where the

number of positive and negative samples for each anchor sample is one each.
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4.4 Experimental Results
We present the evaluation results for our developed self-supervised methods in this

section. In order to assess the quality of the learned representations by our methods,

we fine-tune them on two different downstream tasks. To perform the evaluation

in each downstream task, we analyze the obtained gains in data-efficiency, per-

formance, and speed of convergence. Additionally, each downstream task demon-

strates a certain use-case for our methods. We follow the commonly used evaluation

protocols for self-supervised methods in each of these downstream tasks. Namely:

• Brain Tumor Segmentation on 3D MRI (Sec. 4.4.1): in which we study the

possibility for transfer learning from a different unlabeled 3D corpus, follow-

ing [Goy+19].

• Pancreas Tumor Segmentation on 3D CT (Sec. 4.4.2): to demonstrate how

to use the same unlabeled dataset, following the data-efficient evaluation

protocol in [Hen20].

We provide additional details about architectures, training procedures, augmenta-

tion details, and decoders initialization for segmentation tasks in the Appendix B.

4.4.1 Brain Tumor Segmentation Results
In this downstream task, we evaluate the representations learned by our 3D self-

supervised methods by fine-tuning them on the Multimodal Brain Tumor Seg-

mentation (BraTS) 2018 [Bak+17; Men+15] dataset. However, the model semantic

representations are all obtained by pretraining with our methods on the Brain MRI

data from the UK Biobank [Sud+15] (UKB) corpus. We use roughly 22𝐾 3D Brain

MRI scans from the UK Biobank. Due to this large number of unlabeled scans, UKB

is suitable for unsupervised pretraining. The BraTS dataset contains labelled MRI

scans for 285 training and 66 validation cases. We fine-tune on the BraTS’ training

set, and we evaluate on the validation set. Following the official BraTS challenge,

we report Dice scores for the Whole Tumor (WT), Tumor Core (TC), and Enhanced

Tumor (ET) tasks. The Dice score (F1-Score) is twice the area of overlap between

two segmentation masks divided by the total number of pixels in both.

In order to assess the quality of the learned representations by our 3D self-

supervised methods, we compare to the following baselines:

• Training from scratch: the first sensible baseline for any self-supervised

method, in general, is the samemodel architecture trained on the downstream
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Chapter 4 Self-supervision from 3D Medical Scans

task when initialized from random weights. Comparing to this baseline

provides insights about the benefits of self-supervised pretraining.

• Training on 2D slices: this baseline aims to quantitatively demonstrate how

operating on the 3D spatial context benefits the learned representations,

compared to the 2D spatial context.

• Supervised pretraining: this baseline was trained with automatically gener-

ated segmentation labels by FSL-FAST [Woo+09] for UK Biobank scans. The

labels include masks for three brain tissues.

• Baselines from the BraTS challenge: we compare to the methods [Bai+18;

Cha+18a; Ise+18; PAP18], which all use a single model with an architecture

similar to ours, i.e. 3D U-Net [RFB15].

Discussion. We first assess the gains in data-efficiency in this task. To quantify

these gains, we measure the segmentation performance at different sample sizes.

We randomly select subsets of patients samples at rates 10%, 25%, 50%, and 100%

of the full dataset size, and we fine-tune the pretrained models on these subsets.

As shown in Fig. 4.8, the models pretrained with our 3D methods outperform the

baseline model trained from scratch by a large margin when using few training

samples, and behaves similarly as the number of labeled samples increases. The

low-data regime case at 5% suggests the potential for generic unsupervised features,

and highlights the huge gains in data-efficiency. In addition, the models pretrained

with our proposed 3D versions considerably outperform their 2D counterparts,

which are trained on slices extracted from the 3D images. The latter result confirms

that learning from the 3D spatial context considerably improves the quality of the

learned representations.

Pretraining with our self-supervised methods is also expected to improve the

overall segmentation performance of the models, an aspect we assess in this down-

stream task by measuring Dice scores on the full BraTS dataset. As Tab. 4.1 shows,

all models pretrained with our 3D methods outperform the baseline trained from

scratch as well as their 2D counterparts. Additionally, our models achieve compara-

ble results to the baselines from the BraTS challenge, and, in some cases, our models

outperform these baselines, e.g. our 3D-RPL method outperforms all baselines in

terms of ET and TC dice scores. Moreover, the model pretrained with 3D-Exemplar

matches the result of Isensee et al. [Ise+18] in terms of WT dice score, which is

one of the top results on the BraTS 2018 challenge, even though 3D-Exemplar

uses fewer downstream training epochs. In comparison to the supervised baseline
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Figure 4.8: Data-efficient segmentation results in BraTS. With less labeled data, the su-
pervised baseline fails to generalize, as opposed to our methods. Also, the proposed 3D

methods outperform all 2D counterparts.

pretrained with automatic FAST labels (3D Supervised), we find that our results

are comparable, outperforming this baseline in some cases.

Our results in this downstream task also demonstrate a generalization ability of

our 3D tasks across different domains, i.e. our models are pretrained on UK Biobank

and fine-tuned on BraTS. This result is significant, because medical datasets are

supervision-starved, e.g. images may be collected as part of clinical routine, but

much fewer high-quality labels are produced, due to annotation costs.

4.4.2 Pancreas Tumor Segmentation Results

In this downstream task, we evaluate models pretrained with our methods on 3D

CT scans of Pancreas tumor from the medical decathlon benchmarks [Sim+19b].

The Pancreas dataset contains annotated CT scans for 420 cases, where each scan

contains 3 different classes: pancreas (class 1), tumor (class 2), and background (class

0). To measure the performance on this benchmark, two dice scores are computed

for foreground classes 1 (pancreas) and 2 (tumor). The nature of the pancreas

dataset in this downstream task is challenging, because the distribution of the
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Table 4.1: Segmentation results of the proposed 3D SSL methods on BraTS data

Model ET WT TC

3D-From scratch 76.38 87.82 83.11

3D Supervised 78.88 90.11 84.92

2D-CPC 76.60 86.27 82.41

2D-SimCLR 77.36 86.33 82.77

2D-RPL 77.53 87.91 82.56

2D-Jigsaw 76.12 86.28 83.26

2D-Rotation 76.60 88.78 82.41

2D-Exemplar 75.22 84.82 81.87

Popli et al. [PAP18] 74.39 89.41 82.48

Baid et al. [Bai+18] 74.80 87.80 82.66

Chandra et al. [Cha+18a] 74.06 87.19 79.89

Isensee et al. [Ise+18] 80.36 90.80 84.32

3D-CPC 80.83 89.88 85.11

3D-SimCLR 79.76 90.02 84.98

3D-RPL 81.28 90.71 86.12
3D-Jigsaw 79.66 89.20 82.52

3D-Rotation 80.21 89.63 84.75

3D-Exemplar 79.46 90.80 83.87

classes exhibits imbalance, i.e. the tumor class is rare compared to the background

class.

In the self-supervised stage, the models are pretrained with our proposed 3D

self-supervised methods on pancreas scans by discarding their associated masks

(labels). Afterwards, the models are finetuned on subsets of annotated data to assess

the gains in both data-efficiency and performance. In terms of baselines, similarly

to the previous downstream task, we establish the baseline model trained from

scratch as well as models trained on 2D slices extracted from the pancreas data

samples. The obtained gains in data-efficiency are illustrated in Fig. 4.9. To quantify

these gains, we fine-tune the pretrained models on 5%, 10%, 25%, 50%, and 100%

of the full dataset size. Then, we evaluate the fine-tuned models on a held-out

labeled test set from the Pancreas dataset that was not used for pretraining nor

fine-tuning. The results obtained by our 3D methods outperform the baselines in

this task with a margin when using only few training samples, e.g. 5% and 10%

cases. This behavior is also consistent when the data size increases to 50% and 100%

of the full size, confirming the benefits on downstream performance in this task

too. We provide additional experimental details in Appendix B.

68



Discussion Section 4.5

5 10 25 50 100
Percentage of labelled images

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Av
g 

D
ic

e 
Sc

or
es

3d-cpc
3d-baseline
2d-cpc

(a) 3D-CPC vs. baselines

5 10 25 50 100
Percentage of labelled images

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Av
g 

D
ic

e 
Sc

or
es

3d-simclr
3d-baseline
2d-simclr

(b) 3d-SimCLR vs. baselines

5 10 25 50 100
Percentage of labelled images

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Av
g 

D
ic

e 
Sc

or
es

3d-jigsaw
3d-baseline
2d-jigsaw

(c) 3D-Jigsaw vs. baselines

5 10 25 50 100
Percentage of labelled images

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Av
g 

D
ic

e 
Sc

or
es

3d-rotation
3d-baseline
2d-rotation

(d) 3D-Rotation vs. baselines

5 10 25 50 100
Percentage of labelled images

0.40

0.45

0.50

0.55

0.60

0.65

Av
g 

D
ic

e 
Sc

or
es

3d-rpl
3d-baseline
2d-rpl

(e) 3D-RPL vs. baselines

5 10 25 50 100
Percentage of labelled images

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Av
g 

D
ic

e 
Sc

or
es

3d-exemplar
3d-baseline
2d-exemplar

(f) 3D-Exemplar vs. baselines

Figure 4.9: Data-efficient segmentation results in Pancreas. With less labeled data, the

supervised baseline fails to generalize, as opposed to our methods. Also, the proposed
3D methods outperform all 2D counterparts.

4.5 Discussion

In this Chapter, we asked whether designing self-supervised methods to operate on

the full 3D spatial context could benefit the learned representations from unlabeled

3D images, and found that it is indeed the case. Employing the 3D context in

self-supervision improves downstream performance, an effect that appears larger

when fine-tuned on only few samples of labeled 3D data. In other words, learning

data representations from 3D data provides considerable gains in data (or label)

efficiency, in a way reducing the efforts of required manual annotation. This result

is significant for the medical imaging domain, where data and annotation scarcity

is an obstacle.

We showcase the obtained gains in downstream data-efficiency, performance, and

even speed of convergence (see Appendix B) on two semantic segmentation tasks.

To highlight these gains, we compare models pretrained with our 3D methods to the

baselines of training from scratch and of pretraining on 2D inputs. The experimental

results demonstrate how utilizing the 3D context improves the representation

quality considerably. Furthermore, we observe performance gains when pretraining

models on a large unlabeled corpus with our proposed methods, and subsequently
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fine-tuning them on a different smaller downstream-specific dataset. This result

suggests alternatives for transfer learning from ImageNet features, which can be

substantially different from the medical domain.
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5 Self-supervision from Medical
Images with other Modalities

This chapter extends own work in [Tal+22a], published in the Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022).

Therefore, many figures, tables, and statements have been quoted verbatim or

reproduced with permission.

5.1 Introduction

Disease patterns in medical images are numerous and their incidence exhibits a long

tail distribution in nature [Zho+21]. In other words, most diseases are infrequent

in clinics, and only a small number of common diseases have sufficiently observed

cases to allow large-scale analysis [BLK14]. Therefore, as a natural next step for

improving our knowledge of disease traits is to fuse knowledge from additional

data modalities, e.g. genomics or clinical data. In this Chapter, we investigate

integrating imaging with genetic modalities, which, as we elaborate below, have

significant causal relations to diseases.

Biobanks are organized collections of biological materials and associated in-

formation stored for research purposes [Hew11]. While biobanks may include

plant or animal material, the term is mostly used to refer to datasets of human

specimens. Recently, large-scale biobank studies have begun to aggregate un-

precedented quantities of multimodal data on human health. For example, the UK

Biobank (UKB) [Sud+15] contains data for 500, 000 individuals, including a wide

range of imaging modalities such as retinal fundus images and cardiac, abdominal,

and brain MRI. Similar studies are currently underway in other countries, such

as the Nationale Kohorte (NaKo) [Bioc], BioMe [Bioa], FinnGen [Fin], Estonia

Biobank [Biob], and others. While some of these biobanks also include phenotypic

descriptions, e.g. a person’s medical history, such data tend to be both highly

incomplete and biased due to clinical practices and assessment methods [Oma+05],

deeming learning from them challenging and error-prone.

On the other hand, genetic data is increasingly abundant in these studies. Study-

ing common genetic variation at scale have been made possible by chip-based

genotyping technologies [Ver+21]. In addition, the exponentially decreasing costs

of genomic sequencing is driving progress for rare genetic variation [PK16]. Due to

71



Chapter 5 Self-supervision from Medical Images with other Modalities
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Figure 5.1: Overview of our contrastive learning method from imaging and genomic

data. It learns representations by bringing the modalities of each individual closer in the

embedding space, and apart from different individuals’. In this example, the modalities are

retinal fundus images (in brown), SNP data (in green), and polygenic risk scores (PGS) (in

purple). Our method handles missing modalities (e.g. missing PGS for the person in the

upper right). Figure source [Tal+22a], reprinted with permission.

these advances, the UKB and other biobanks often contain a rich array of genetic

and genomic measurements. Genetic data is generally less susceptible to bias fac-

tors, and most diseases have at least a partially genetic cause, with some genetic

disorders being exclusively attributed to genetic mutations [WVW14]. Similarly,

the majority of other traits that are not directly related to diseases, e.g. height
and human personality, are also strongly influenced by genetics [Lip+17; Zwi+20].

Similarly, complementary imaging-genetics datasets are increasingly also available

in other application settings, e.g. plant breeding [Yan+20].
Unlabelled medical images carry valuable information about organ structures,

and an organism’s genome is the blueprint for biological functions in the body.

Clearly, integrating these distinct yet complementary data modalities can help

create a more holistic picture of physical and disease traits. Such integration step,

however, is non-trivial and challenging. The human genome consists of three

billion base pairs, yet most genetic differences between individuals have little ef-

72



Introduction Section 5.1

fect. This leads to challenges both in terms of computational aspects, and in terms

of statistical efficiency. Unfortunately, it is not clear a priori which parts of the

genome are relevant and which are not. Typically, genome-wide association studies

(GWAS) [Insb; Man10] use statistical inference techniques to discover relation-

ships between genetic variations and particular physical or disease traits. To date,

thousands of scientific works have found more than 300, 000 genetic-phenotype

associations [Insc]. However, even now a large portion of known or presumed

heritability of traits is not yet accounted for by the individual genome-trait associa-

tions, a phenomenon known as “missing heritability” [Man+09]. Therefore, seeking

better methods or solutions may help in finding and explaining the relationships

between genetic and imaging modalities.

The growing number of biobanks of imaging-genetics data, which are unlabeled

and multimodal in nature, calls for solutions that can: (i) learn semantic data rep-

resentations without requiring costly expert annotations, (ii) integrate these data
modalities end-to-end in an efficient manner, and (iii) explain discovered cross-

modal correspondences (associations). Hence, as explained in earlier Chapters,

self-supervised representation learning offers a pertinent solution when unlabeled

data is abundant and labels are scarce. Furthermore, these algorithms also allow

for integrating multiple data modalities as distinct views, which can lead to con-

siderable performance gains. Despite the recent advancements in self-supervised

methods, e.g. contrastive learning, we are not aware of any prior work that lever-

ages self-supervised representation learning on combined imaging and genetic

modalities. We believe self-supervised learning has the potential to address the

labelling challenges inherent to the medical domain.

As a result, we propose a novel self-supervised method in this Chapter, called

ContIG, that can learn from datasets of unlabeled medical images and genetic data

modalities. ContIG is short for Contrastive Learning for Medical Imaging with

Genetics. This algorithm aligns imaging and geneticmodalities in the representation

space using a contrastive loss, which enables learning semantic representations

in the same model end-to-end. Our approach handles the case of multiple ge-

netic modalities, in conjunction with images, even when the available modalities

vary across individuals. Nevertheless, a main requirement we proposed above

is explainability of discovered imaging-genetic associations, for which we adapt

gradient-based explainability algorithms. Our method discovers interesting associ-

ations across these modalities, and we confirm their relevance by cross-referencing

biomedical literature. We evaluate the representations learned by ContIG via

transfer learning on several downstream tasks, and the results outperform state-of-

the-art self-supervised methods on all benchmarks. We also perform genome-wide

73



Chapter 5 Self-supervision from Medical Images with other Modalities

association studies on the learned features, and we find they uncover interesting

relationships between images and genetic data.

5.2 Related Work

Deep learning from multiple data modalities. Learning from multimodal data

presents several inherent challenges, such as: multimodal fusion, alignment, and

representation [BAM19; Ngi+11]. Prior works, some of which are self-supervised,

learn from diverse sets of modalities, such as: image with text (vision and lan-

guage) [Ayt+18; Joh+16; Li+19; Lu+19; Sun+19a; Sun+19b; TB19; Xu+15], im-

age with audio [Alw+19; Asa+20; AVT16; AZ17; OE18; Owe+18], audio with

text [AGG18; YBJ18], and multi-view (multimodal) images [PG16a; SBO18; SZ14;

TKI20]. More recent self-supervised works employed contrastive learning for mul-

timodal inputs, e.g. images with text captions [Ala+20; Pat+21; Rad+21; Yua+21;

Zha+20a; Zha+20b]. We follow this line of work, and we extend contrastive pre-

training to novel modalities, i.e. images and genetics, for the first time.

Deep learning from imaging with genetics. Not only have deep learning

methods been successfully applied to medical imaging [Ma+20], they also found

success in application domains with genomics data [Era+19; Kou20; Wu+21; Zit+19;

Zou+19]. Few recent works have utilized deep learning to learn jointly from

both data modalities, such as [Ash+21; BS20; Cha+18c; Dai+21; Fuj+21; Gun+20;

Kir+21; Nin+18; Ven+21; Zho+19a]. However, these methods are all either highly

application specific or fully supervised. Notably, we are not aware of any prior

work leveraging the self-supervised framework (with contrastive loss functions) to

improve representation learning from combined imaging and genetic data.

5.3 Methods

In Sec. 5.3.1 we first review some biomedical foundations and motivate the genetic

modalities chosen in this Chapter, which exhibit complementary biological proper-

ties. Then, we describe our contrastive method in Sec. 5.3.2, and different modality

aggregation types. Finally, we detail the explanation methods for genetic features

in Sec. 5.3.3. Some passages in these subsections have been quoted verbatim from

own work in [Tal+22a], and are only insignificantly changed.
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Figure 5.2: Schematic illustration for the steps of our proposed method. (a) Assuming

one imaging modality (retinal fundus shown in brown), and three genetic modalities

(Single-nucleotide polymorphisms (SNP) in green, polygenic risk scores (PGS) in purple,
burden scores in yellow). Note that different genetic modalities exhibit different variant

frequencies (denoted by the histogram in blue): SNP and PGS use common variants (high

frequency), while burdens use rare variants (low frequency). (b)We extract features from

each modality with deep neural networks, i.e. Convolutional Networks for images and Fully

Connected (MLP) networks from genomic data. We use a projection head (MLP) for each

modality, which produces equally-sized modality embeddings 𝑧𝑣, 𝑧𝑔1, 𝑧𝑔2, 𝑧𝑔3. (c) We use

these embeddings in the contrastive loss computation. The embeddings of each individual

are encouraged to come closer in the feature space (depicted by the gray circle), and farther

from other individuals’. The dotted gray lines demonstrate the contrasting mechanism

between modalities. Figure source [Tal+22a], reprinted with permission.
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5.3.1 Modalities of Genetic Data

The basic building blocks of DNA, which encodes the biological functions needed

for the development of an organism, are called nucleotides. A long sequence of the

four nucleotides Adenine (A), Thymine (T), cytosine (C), and Guanine (G) make up

the genome - the "recipe" needed to build an organism [Insa]. A relatively small

fraction of the genome codes for proteins, while the remaining parts have regulatory

or structural functions. Proteins make up much of the structural components of

the cell, and enable the thousands of biochemical reactions needed for survival.

However, over generations, genetic mutations occur, for example substituting one

nucleotide for another, e.g. A to C. Some of these genetic changes can alter physical

traits (e.g. eye color), or cause diseases (e.g. Alzheimer’s). "Genotyping" is the

process of measuring these genetic changes [RH05]. The most frequently measured

type of changes are single-nucleotide-polymorphisms (SNPs), where a single pair

of nucleotides is altered at a specific position in the genome.

There are three billion base pairs in the human genome, but typically only a small

fraction of them is measured, due to cost and technological restraints. Even if large

parts of the sequence are available, as is the case for whole-genome sequencing

studies, working with the raw data is not feasible, both in terms of statistical
efficiency – most of those base pairs carry no causal signal and only add noise to

the estimation process – and in terms of computational efficiency. For these reasons,
most studies record only a small subset of all nucleotides, usually on the order of

several hundred thousand to several million SNPs. Furthermore, human traits of

interest are constructed by a spectrum of different genetic architectures. At the same

time, due to evolutionary dynamics, some SNPs exhibit their possible variations

frequently in a population (“common” variants), while other SNPs are identical for

the overwhelming majority of the population with only few individuals having

mutations (“rare” variants) – a form of class imbalance. Therefore, we consider three
different ways to encode the genetic modalities that emphasize different aspects of

human physiology.

Complex traits are traits that are influenced by a large number of causal factors,

including relatively common genetic variations. One example is height, which is

determined to a large degree by many SNPs all across the human genome [Yan+10].

Many common diseases and impairments are complex traits, which makes them

especially relevant to human health applications [Fra+09]. To best encode genetic

architectures associated with complex traits, we utilize polygenic risk scores
(PGS) [Dud13]. PGS aggregate many, mostly common, SNPs into a single score

that reflects a person’s inherited susceptibility to a specific disease [Khe+18]. The

individual SNPs are weighted based on their strength of association with the disease.
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By using many different PGS for different traits and diseases we can get a multi-

faceted view of an individual’s complex trait predisposition.

Recent advances in DNA sequencing have also enabled assessing the contribution

of rare genetic variants to heritable traits [Wai+21]. Rare variants occur at low

frequencies (e.g. MAF
5 < 1% or MAF≪ 1%) in a population. Large genetic effects

often negatively affect an individual’s health and are strongly selected against

by evolution. Hence, in contrast to common variants, many rare variants have

a large effect size and predispose for genetic diseases. Rare variants are usually

not included in PGS, and due to their low frequencies they pose a challenge for

robust statistical models. In this Chapter, we use burden scores [Lee+12], which
aggregate several rare variants within a localized genetic region.

Finally, we also employ a uniformly sampled cross section of the whole genome,

by including every 𝑘-th SNP that has been genotyped in the respective study.

These raw SNPs are mostly common variants (due to the biological sampling

procedure) and give a broad representation of an individual’s genetic composition.

This representation likely carries population structure such as ancestry [Lip+11],

but also tags highly diverse functional information.

The three chosen genetic modalities – polygenic risk scores, burden scores, and

raw SNPs – capture complementary aspects and together paint a broad description

of an individual’s genetic predisposition. We employ them both individually and

jointly as contrastive views to medical images.

5.3.2 Contrastive Learning from Images & Genetics

We assume a dataset of 𝑁 multimodal samples, one for each individual person.

Each sample consists of a medical image paired with multiple genetic modalities.

Here, we denote each image by 𝑥𝑖𝑣 , and the corresponding genetic modalities by

𝑥𝑖𝑔𝑚 , where 𝑖 ∈ {1, .., 𝑁 } is the individual and𝑚 ∈ {1, .., 𝑀} is the genetic modality.

We group images and genetic modalities in batches of size 𝑏 > 1 by the individual

modalities: 𝑣 = {𝑥𝑖1𝑣 , . . . , 𝑥𝑖𝑏𝑣 } and 𝑔𝑚 := {𝑥𝑖1𝑔𝑚, . . . , 𝑥𝑖𝑏𝑔𝑚}. The number of available

genetic modalities may vary across individuals.

Our method, illustrated in Fig. 5.2, processes these input modalities with a set

of neural network encoders, one per modality. We denote the image encoding by

ℎ𝑖𝑣 = 𝑓𝑣 (𝑥𝑖𝑣), and the genetics encodings as ℎ𝑖𝑔𝑚 = 𝑓𝑔𝑚 (𝑥𝑖𝑔𝑚), with𝑀 distinct genetics

encoders. The resulting 𝑑-dimensional vector representations ℎ𝑖𝑣, ℎ
𝑖
𝑔𝑚 ∈ ℝ𝑑

are then

processed with projection heads 𝑧𝑖𝑣 = 𝑝𝑣 (ℎ𝑖𝑣), 𝑧𝑖𝑔𝑚 = 𝑝𝑔𝑚 (ℎ𝑖𝑔𝑚), respectively, where

5 minor allele frequency

77



Chapter 5 Self-supervision from Medical Images with other Modalities

𝑧𝑣, 𝑧𝑔𝑚 ∈ ℝ𝑑
. Following [Che+20a], each projection head is a non-linear MLP with

one hidden-layer.

Formulation of Contrastive Loss with Two Modalities. We first define the

contrastive loss assuming 𝑁 pairs of an image and one genetic modality (𝑥𝑖𝑣, 𝑥𝑖𝑔),
with their respective representations (𝑧𝑖𝑣, 𝑧𝑖𝑔). Then, for the image sample in the

𝑖𝑡ℎ pair, we consider the genetic sample 𝑥𝑖𝑔 as the positive (true) sample among

the negative genetic samples of other individuals 𝑥𝑘𝑔 in the same batch. Similarly,

the image 𝑥𝑖𝑣 is the positive sample of 𝑥𝑖𝑔, amongst the negative image samples 𝑥𝑘𝑣 .

Therefore, the contrastive loss is the sum of these two parts: i) image-to-genetics

𝐿(𝑣, 𝑔) (fix the image and contrast genetic samples), and ii) genetics-to-image 𝐿(𝑔, 𝑣)
(fix the genetics and contrast images). Formally, in each step of the training we

select a random batch of size 𝑏 > 1 with indices {𝑖1, . . . , 𝑖𝑏} and use the batch-wise

loss function:

𝐿(𝑣, 𝑔) = −
𝑏∑︁
𝑗=1

log

exp(cos(𝑧𝑖 𝑗𝑣 , 𝑧
𝑖 𝑗
𝑔 )/𝜏)∑𝑏

𝑘=1,𝑘≠ 𝑗
exp(cos(𝑧𝑖 𝑗𝑣 , 𝑧𝑖𝑘𝑔 )/𝜏)

L𝑐𝑜𝑛𝑡 (𝑣, 𝑔) = 𝜆𝐿(𝑣, 𝑔) + (1 − 𝜆)𝐿(𝑔, 𝑣),

(5.1)

where 𝜏 is a temperature parameter, cos is the cosine similarity, and 𝜆 ∈ [0, 1] is a
loss weighting hyperparameter.

Generalizing to Multiple Genetic Modalities. We generalize here the above

contrastive loss formulation to the case when there exists multiple available genetic

modalities, corresponding to the same image sample. Since we aim to improve the

learned visual representations mainly, the image modality is used at the center

of this training scheme (we deem alternative contrasting schemes a future work).

In other words, we contrast the image with each one of the𝑀 genetic modalities.

Therefore, the generalized multimodal contrastive loss becomes:

L(𝑣, 𝑔1, . . . , 𝑔𝑀 ) =
𝑀∑︁
𝑚=1

L𝑐𝑜𝑛𝑡 (𝑣, 𝑔𝑚) (5.2)

This formulation ensures the learned visual representations capture useful infor-

mation from all available genetic modalities. However, this assumes that every

individual has all the genetic modalities, which is not normally the case. Hence,

we define two aggregation schemes to handle the missing genetic modalities: i)
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the "inner" aggregation scheme, which uses only those individuals for which all
the modalities exist, and ii) the "outer" aggregation scheme, which covers all the

individuals, even those with missing genetic modalities. In particular, for each

L𝑐𝑜𝑛𝑡 (𝑣, 𝑔𝑚) in Eq. (5.2), the “outer” aggregation only includes individuals with

non-missing data for this specific modality. The "outer" scheme can make better use

of all available data. Both schemes allow for training on combinations of existing

modalities.

5.3.3 Genetic Features Explanation

For a given multimodal tuple 𝑥 := (𝑥𝑣, 𝑥𝑔1, . . . , 𝑥𝑔𝑀 ) of image and genetic represen-

tations, we perform feature explanations to understand the contribution of each

genetic feature 𝑔𝑚,𝑗 for the model output. Standard deep learning explainability

approaches are not directly applicable in this setting, as they require a simple

one-to-one relation from input to output, while the contrastive loss Eq. (5.2) is com-

puted over batches. Instead, we utilize a fixed reference batch of 𝑏 ≥ 1 individuals

with images 𝑣𝑟 and genetic modalities 𝑔𝑚,𝑟 (𝑚 = 1, . . . , 𝑀) and define the explainer

function

𝐸 (𝑥) := L(𝑣𝑟 ∪ {𝑥𝑣}, 𝑔1,𝑟 ∪ {𝑥𝑔1}, . . . , 𝑔𝑀,𝑟 ∪ {𝑥𝑔𝑀 })
with L defined as in Eq. (5.2), but 𝑣𝑟 , 𝑔1,𝑟 , . . . , 𝑔𝑀,𝑟 fixed. We can then use standard

feature attributionmethods such as IntegratedGradients [STY17] or DeepLift [SGK17]

to explain the contribution of all elements in 𝑥 towards the full batch loss. We

can additionally also fix the input image 𝑥𝑣 to only consider the attribution of the

genetic effects. Note that the explanation will be sensitive to the choice of the

reference batch; to minimize this effect, we choose 𝑏 to be relatively large (𝑏 = 1, 000

in our experiments).

In addition to these local instance-specific attributions, we are especially inter-

ested in understanding the behavior of our models globally. For this, we aggregate
many individual explanations, all using the same (independent) reference batch.

Feature importance both in negative and positive direction is important in our set-

ting, and therefore we consider the mean absolute value for each feature dimension

as a measure of global attribution.

The setting with missing values can be handled analogously to the "outer" aggre-

gation scheme in Sec. 5.3.2, by just omitting the respective modalities.
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5.4 Experimental Results
We present the evaluation results of our method in this section. First, we detail

the datasets used for both pretraining and evaluation purposes in Sec. 5.4.1. Then,

we assess the quality of the learned representations, by: i) fine-tuning (transfer

learning) on four downstream tasks in Sec. 5.4.2, ii) linear evaluation of the learned

representations on the same downstream tasks in Sec. 5.4.3, iii) quantifying the

gains in labelled data efficiency in Sec. 5.4.4, and iv) performing a genome-wide

association study (GWAS) on the model features in Sec. 5.4.5. Finally, we present

the genetic feature explanation results in Sec. 5.4.6, and we analyze the findings to

check their relevance with medical literature resources. Similarly, few passages in

this section have been quoted verbatim from own work in [Tal+22a], and are only

insignificantly changed.

5.4.1 Datasets
We pretrain our models (and the unsupervised baselines) on data obtained from

the UK Biobank (UKB) dataset [Sud+15]. This dataset contains multimodal data for

almost 500k individuals, although imaging data is only available for a subset of those.

The UKB contains an overwhelming majority of individuals of European descent;

we therefore restrict our pretraining dataset to European descent individuals, as

including individuals from other populations would likely introduce very large

confounding effects [Lip+11]. For the purposes of pretraining, we utilize the retinal

fundus images, which amount to 155, 238 imaging samples (left and right eyes). The

genetic modalities we employ (see Sec. 5.3.1), amount to 155, 238 Raw-SNP samples,

145, 206 PGS samples, and 93, 216 burden scores. In terms of feature dimensions,

for the raw-SNPs, we uniformly sample every 100
𝑡ℎ
SNP from 22 Chromosomes

(excluding the X and Y chromosomes), resulting in 7, 854 SNPs per sample. For

PGS, we used 481 scores for a wide variety of different traits downloaded from

the PGS Catalog [Lam+21]. We created burden scores for 18, 574 protein-coding

genes [Mon+21]. These binary scores indicate whether a participant has at least

one potentially damaging rare (MAF < 1%) variant within a given gene. We holdout

a test split (20%) from the UKB dataset, and the remaining data are for training

(70%) and validation (10%). Each person only appears in one split.

For the downstream tasks, we employ: i) APTOS 2019 Blindness Detection [19]

dataset for Diabetic Retinopathy detection in Sec. 5.4.2, which has 3, 662 retinal fun-

dus training samples. ii) Retinal FundusMulti-disease ImageDataset (RFMiD) [Pac+21]

for disease classification (Sec. 5.4.2), which has 3, 200 training images. iii) 102, 219

images from the UKB [Sud+15] training split, but now we predict cardiovascu-
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lar risk factors (Sec. 5.4.2). iv) Pathologic Myopia challenge dataset [Fu+19] for

Pathological Myopia Segmentation (Sec. 5.4.2), which has 400 image samples with

segmentation masks. More datasets details in the Appendix C.

5.4.2 Transfer Learning (Fine-Tuning) Results
In this section, we evaluate the quality of representations by fine-tuning to down-

stream tasks. In other words, we unfreeze the encoder layers weights in this set of

experiments, as opposed to the results in Sec. 5.4.3.

Models & architectures. Across the following experiments, we train neural

network models with our proposed method ContIG. For the image encoder part of

the model (𝑓𝑣 in Fig. 5.2), we employ a Resnet50 [He+16]. For the genetic encoders

(𝑓𝑔𝑚), we vary the number of fully connected layers: "None" hidden layers, one

hidden layer "H1", and two hidden layers "H12". We also vary the combination of

genetic modalities (detailed in Sec. 5.3.1) used in pretraining, along with modality

aggregation schemes (explained in Sec. 5.3.2).

Baselines. We compare to the following baselines:

• Training from scratch (Baseline): we train the same model on each down-

stream task, but initialized from random weights. The comparison with this

baseline provides insights about the benefits of pretraining.

• Contrastive methods from state-of-the-art: we compare to self-supervised

(contrastive) methods from literature by training on the same data splits,

and using the same experimental setup. Namely, we compare to models pre-

trained with SimCLR [Che+20a], BYOL [Gri+20], Barlow Twins [Zbo+21],
SimSiam [CH21], and NNCLR [Dwi+21].

Diabetic Retinopathy Detection (APTOS)

Millions of people suffer from Diabetic Retinopathy, the leading cause of blindness

among working aged adults. The APTOS dataset [19] contains 2D fundus images,

which were rated by a clinician on a severity scale of 0 to 4. These levels define a

five-way classification task. We fine-tune the image encoder of our models and the

baselines on this dataset, and then we evaluate on a fixed test split (20% of the data).

The metric used in the task, as in the official Kaggle challenge, is the Quadratic

Weighted Kappa (QwKappa [Coh68]), which measures the agreement between

two rating sets. Its values vary from random (0) to complete agreement (1), and if
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Model & Genetics Encoder

APTOS RFMiD PALM Cardio. Risk Pred.

QwKappa ↑ ROC-AUC ↑ Dice-Score ↑ MSE ↓ ROC-AUC ↑
Baseline - 80.47 91.64 77.25 3.440 56.29

SimCLR [Che+20a] - 81.83 91.88 70.41 3.451 59.38

SimSiam [CH21] - 75.44 91.28 72.26 3.442 57.37

BYOL [Gri+20] - 71.09 89.88 66.32 3.414 59.73

Barlow Twins [Zbo+21] - 72.28 92.03 70.53 3.430 59.05

NNCLR [Dwi+21] - 77.93 91.89 72.06 3.426 61.95

ContIG (Raw-SNP) None 81.99 92.27 74.96 3.366 64.71

ContIG (Raw-SNP) H1 84.01 93.22 76.98 3.254 70.10

ContIG (Raw-SNP) H12 82.56 93.09 77.02 3.201 69.58

ContIG (PGS) None 83.84 91.63 76.86 3.257 69.81

ContIG (PGS) H1 85.93 93.31 78.47 3.176 72.72
ContIG (PGS) H12 86.44 93.04 77.04 3.216 70.69

ContIG (Burden) None 82.92 93.68 76.89 3.273 71.91

ContIG (Burden) H1 83.22 93.03 76.49 3.160 72.37

ContIG (Burden) H12 83.61 93.14 76.72 3.236 71.50

ContIG (Inner RPB) None 83.49 93.31 77.11 3.195 71.68

ContIG (Inner RPB) H1 81.52 92.95 77.34 3.202 70.80

ContIG (Inner RPB) H12 80.24 92.94 75.37 3.235 68.89

ContIG (Outer RPB) None 82.93 93.01 76.31 3.260 69.16

ContIG (Outer RPB) H1 84.22 93.62 76.97 3.187 71.80

ContIG (Outer RPB) H12 84.21 93.41 77.51 3.233 71.13

Table 5.1: Evaluation results by fine-tuning on downstream tasks. Bold indicates the best

result, underlined is second best. RPB in our method stand for the genetic modalities used:

Raw-SNPs, PGS-scores, and Burden-scores. ↑means higher is better, and ↓ lower is better.

there is less agreement than chance it may become negative. The evaluation results

in Tab. 5.1 support the effectiveness of our proposed contrastive method (ContIG).

Our pretrained models outperform all baselines in this task, demonstrating the

quality of its learned representations.

Retinal Fundus Disease Classification (RFMiD)

The Retinal Fundus Multi-disease Image Dataset (RFMiD) [Pac+21] also contains

2D fundus images, which are captured using three different cameras. It has 46

class labels, which represent disease conditions annotated through adjudicated

consensus of two experts. Similarly, to evaluate on this task, we fine-tune the image

encoders on this dataset, and we measure the performance on the test set. We
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should note that this task is solved as a multi-label classification task, since the

patients may have multiple conditions at the same time. As an evaluation metric,

we compute area under the ROC curve (ROC-AUC), and we use a micro averaging

scheme [Lea]. The results for this task in Tab. 5.1 also demonstrate the gains in

performance obtained by pretraining with ContIG. Our models also outperform

the self-supervised baselines in this task.

Pathological Myopia Segmentation (PALM)

Myopia has become a global burden of public health. Pathologic myopia causes

irreversible visual impairment to patients, which can be detected by the changes

it causes in the optic disc, including peripapillary atrophy, tilting, etc. The PALM

dataset [Fu+19] contains segmentation masks for these lesions, from which we

evaluate on disc and atrophy segmentation tasks. Similar to the above downstream

tasks, we fine-tune the image encoder on this dataset and evaluate on the test split.

To predict segmentation masks, we add a u-net decoder [RFB15] on top of the

ResNet50 encoder. In terms of evaluation metrics, we use the dice score [Sor]. The

results of this task in Tab. 5.1 showcase the quality of the learned representations

by ContIG on semantic segmentation.

Cardiovascular Risk Prediction

Previous work has shown that retinal fundus images can predict a range of risk

factors for cardiovascular diseases [Pop+18]. Namely, retinal fundus images have

been found to carry information about age, sex, smoking status, systolic and dias-

tolic blood pressure (SBP, DBP), and body mass index (BMI). We predict these six

risk factors using a subset of the UK Biobank [Sud+15] dataset, by fine-tuning the

image encoder on these values. As evaluation metrics, we use Mean Squared Error

(MSE) for the numerical factors (age, BMI, SBP, DBP), and we use the ROC-AUC

value for the categorical factors (sex and smoking status). As Tab. 5.1 shows, models

pretrained with ContIG outperform the baseline models in both classification and

prediction (regression) tasks.

5.4.3 Linear Evaluation Results
In this section, we follow a linear evaluation protocol [Che+20a; OLV18; ZIE16],

meaning that the encoder weights are kept frozen and only a linear classifier /

regressor is trained on top. Similarly to the fine-tuning protocol, linear evaluation

aims to provide an idea about the quality of semantic representations stored in
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Model & Genetics Encoder

APTOS RFMiD PALM Cardio. Risk Pred.

QwKappa ↑ ROC-AUC ↑ Dice-Score ↑ MSE ↓ ROC-AUC ↑
SimCLR [Che+20a] - 35.02 86.53 59.77 3.998 52.26

SimSiam [CH21] - 21.25 87.91 56.58 3.998 53.13

BYOL [Gri+20] - 17.39 87.84 54.04 4.009 52.29

Barlow Twins [Zbo+21] - 44.75 87.65 59.52 3.952 54.28

NNCLR [Dwi+21] - 24.76 85.80 66.25 3.870 54.17

ContIG (Raw-SNP) None 59.14 89.24 72.82 3.683 59.07

ContIG (Raw-SNP) H1 69.85 89.99 75.25 3.443 64.36

ContIG (Raw-SNP) H12 68.72 90.47 74.39 3.439 69.58

ContIG (PGS) None 66.34 88.16 75.03 3.488 62.64

ContIG (PGS) H1 72.38 90.43 76.35 3.426 63.98

ContIG (PGS) H12 70.20 90.01 77.13 3.481 63.27

ContIG (Burden) None 70.29 91.08 75.31 3.453 64.72

ContIG (Burden) H1 70.67 90.62 75.42 3.421 64.70

ContIG (Burden) H12 71.22 91.10 76.09 3.434 64.84

ContIG (Inner RPB) None 70.26 89.94 75.27 3.439 63.84

ContIG (Inner RPB) H1 66.94 88.65 75.00 3.404 64.73

ContIG (Inner RPB) H12 68.41 90.56 73.08 3.457 63.45

ContIG (Outer RPB) None 66.94 90.38 75.29 3.448 65.20
ContIG (Outer RPB) H1 66.60 89.46 77.04 3.398 64.59

ContIG (Outer RPB) H12 68.57 90.51 76.50 3.388 65.20

Table 5.2: Downstream evaluation results by linear evaluation on each task. Similarly,

the results obtained by ContIG outperform all baselines. Bold indicates the best result,

underlined is second best. RPB in our method stand for the genetic modalities used: Raw-
SNPs, PGS-scores, and Burden-scores. ↑means higher is better, and ↓ lower is better.

the model encoder. However, linear evaluation attempts to minimize the influence

of encoder weight changes due to downstream task loss gradients. This in a way

evaluates the relevance of learned generic features by the unsupervised task, here

by ContIG. We compare to the same baselines presented in Sec. 5.4.2, and we use

the same model architectures and evaluation metrics. As shown in Tab. 5.2, the

models trained with our method “ContIG” consistently outperform the baselines,

confirming the high quality of features learned by “ContIG”.

5.4.4 Data-Efficiency Results
In this section, we assess the quality of semantic representations by measuring

the gains in labelled data-efficiency. To quantify these gains, we follow a semi-
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Model

Label Fraction

1% 10%

MSE ↓ ROC ↑ MSE ↓ ROC ↑
SimCLR [Che+20a] 4.029 51.43 3.762 54.29

SimSiam [CH21] 3.861 53.35 3.564 57.45

BYOL [Gri+20] 3.894 51.68 3.505 56.71

Barlow Twins [Zbo+21] 3.788 51.89 3.558 56.86

NNCLR [Dwi+21] 3.913 52.20 3.643 55.99

ContIG (Raw-SNP) 3.541 60.11 3.414 64.81

ContIG (PGS) 3.521 59.23 3.391 65.86

ContIG (Burden) 3.540 59.74 3.393 65.41

ContIG (Inner RPB) 3.511 59.95 3.397 65.71

ContIG (Outer RPB) 3.490 60.39 3.378 65.99

Table 5.3: Data-efficient evaluation results by fine-tuning on subsets of UKB samples. All

our ContIG models use the "H1" genetic encoder variant. Bold indicates the best result,

underlined is second best. ↑means higher is better, and ↓ lower is better.

supervised experimental scheme, in which we choose randomly 1% and 10% of the

labels provided by UK Biobank (UKB) [Sud+15], and perform the downstream tasks

of Cardiovascular Risk Factors prediction. Then, we evaluate using the same fixed

test split of 20% of UKB dataset size. We choose this particular downstream task

as UKB’s dataset size is large enough to allow a simulation for expert annotation

collection process, i.e. 1% of the overall labels is approximately 1000 samples, and

such number may simulate an annotation process. The other benchmark datasets

(APTOS [19], RFMiD [Pac+21], and PALM [Fu+19]) are relatively small in size. The

evaluation results shown in Tab. 5.3 compare models trained with ContIG to models

trained with the self-supervised baselines. ContIG outperforms the baselines in

this evaluation scheme too. Note that all models are trained on the same exact

subset of individuals and also evaluated on the same test set. The results for this

data-efficient evaluation scheme especially confirm the advantages of pretraining

with multiple genetic modalities using the "Outer" aggregation scheme. Notably,

semi-supervised pretraining of ContIG with only 1% labeled data still outperforms

the self-supervised baselines when they have 10× as much labeled data available.

5.4.5 Genome-wide Association Study Results

A GWAS is a statistical analysis that correlates individual genetic markers sampled

along the full genome with a trait of interest, such as a specific disease. GWAS
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studies usually require a low-dimensional, well-defined trait for association anal-

ysis; there is only little work yet on leveraging full medical imaging data in a

GWAS setting [Ash+21; Kir+21], or high-dimensional representations of such data.

Here, we follow the transferGWAS [Kir+21] framework to evaluate the embed-

dings learned by ContIG. In this framework, images are projected onto their latent

space embeddings and then the dimensionality is further reduced with a Principal

Component Analysis. These low dimensional image representations can then be

efficiently associated with SNPs using statistical association analysis tools such as

PLINK [Cha+15; Pur+07]. To compare different training methods, we count how

many independent genetic regions each method finds; a more expressive image

representation is expected to find more associated regions. We defer the complete

analysis details to Appendix C.

We present the results of the performed GWAS study in Tab. 5.4 and Fig. 5.3. In

Tab. 5.4, we report the number of found independent regions for each pretraining

method. Genetic pretraining increases the statistical power of the genetic associ-

ation study considerably. Only BYOL [Gri+20] achieves near-competitive results

and all other self-supervised methods are outperformed by a large margin. We also

looked up the found regions in the GWAS catalog [Insc] of published association

results. Many of the regions were already known to be associated with skin pig-

mentation. This is not surprising, as the retina is known to be pigmented itself,

which again is likely to be correlated with actual skin pigmentation. Besides pig-

mentation, the GWAS catalog records associations with an array of cardiovascular

traits (such as BMI, pulse pressure, large artery stroke, and blood biomarkers), as

well as eye-specific associations (cataract and astigmatism). Similar results were

found by [Kir+21], albeit with a larger sample size.

Fig. 5.3 shows the manhattan plot of genome-wide associations from the GWAS

with ContIG and other pretraining methods. A number of very strong signals, e.g.
on chromosomes 15 and 5, are known to be associated with skin pigmentation

and cardiovascular traits. Manhattan plots for the other pretrained models look

similar but with less signal. Almost all models found strong signals on chromosome

15. Interestingly, the manhattan plots for both SimCLR and BYOL (Fig. 5.3 (a) &

Fig. 5.3 (c)) show clear signs of an ill-fitted association model. BYOL exhibits most

likely spurious associations distributed over the whole genome but no signal in

the chromosome-15 pigmentation region. This happens even after applying the

inverse-normal transformation to counteract outliers and is likely due to different

forms of confounding. This finding also explains the surprisingly large number

of hits for BYOL – they are most likely false-positives. A more careful analysis

with mixed effect models [Lip+11] and in-depth inspection of the image features is

beyond the scope of this thesis.
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(a) SimCLR (b) SimSiam

(c) BYOL (d) Barlow Twins

(e) NNCLR (f) Contig (Raw-SNP)

(g) Contig (PGS) (h) Contig (Burden)

(i) Contig (Inner RPB) (j) Contig (Outer RPB)

Figure 5.3: Manhattan plot for the GWAS with different methods. The x-axis shows

the position of each SNP on the genome, the y-axis is the negative base-10 logarithm

of the p-value for each SNP. Higher values correspond to lower p-values, correspond to

stronger signal. The red line corresponds to a significance threshold of 0.05 Bonferroni-

adjusted for the number of SNPs; the green line corresponds to “genome-wide significance”

(5 · 10−8). P-values are clamped at 10
−99

for clearer visualization (only relevant for the loci

on chromosome 15 with a minimum p-value of 10−320). Figure source [Tal+22a].
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Model Found Regions ↑
SimCLR [Che+20a] 4

SimSiam [CH21] 2

BYOL [Gri+20] 17

Barlow Twins [Zbo+21] 8

NNCLR [Dwi+21] 3

ContIG (Raw-SNP) 16

ContIG (PGS) 20

ContIG (Burden) 19

ContIG (Inner RPB) 22
ContIG (Outer RPB) 18

Table 5.4: GWAS results. Indicated is the number of independent regions associated with

the image embeddings for each model

5.4.6 Genetic Feature Explanation Results
In this section, we inspect the representations learned by ContIG using the expla-

nation methods developed in Sec. 5.3.3
6
. First, we analyze the models trained with

a single genetic modality. Fig. 5.4 shows the 30 PGS with the strongest attributions,

aggregated over 1,000 examples with a reference batch of size 1,000. The most

important features are different kinds of skin cancers (basal & squamous cell carci-

noma, cutaneous melanoma and melanoma). This can be explained by the fact that

the retina is pigmented and skin pigmentation is highly correlated to skin cancer.

Besides that, glaucoma, which is a disease of the optic nerve, is a highly relevant

PGS, and many of the other traits are linked to cardiovascular functions (abnormal

EKG, HDL cholesterol, blood protein measurements, QT interval), smoking status

(lung adenocarcinoma, FEV/FEC ratio, response to bronchodilator) and liver and

kidney function (triglyceride & serum urea measurements). This is in line with pre-

vious studies which found strong signals with similar biomarkers in retinal fundus

images [Pop+18]. Interestingly, ContIG also finds correlations with neurological

conditions such as Parkinson’s disease and autism, which have previously been

linked to retinal changes as well [Gia+14; Sat+14].

Similarly, among the 15 strongest associations for raw SNPs, these SNPs were

previously associated with cardiovascular traits (rs10807207, rs228416, rs1886785,

rs10415889, rs3851381), pigmentation (rs228416), neurological and psychological

conditions (rs1886785, rs1738895, rs6533374), and smoking status (rs6533374).

6 We validate that our explanation approach can in fact distinguish meaningful features from noise

features in Appendix C
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In addition to the global attributions, Fig. 5.5 shows the local attributions for one

image/PGS pairing. The retinal fundus image shows strong signs of vascular tortu-

osity, a known and important biomarker for cardiovascular conditions [Che+11].

Analogously, for this instance there is a large number of PGSs very strongly re-

lated to cardiovascular health (insulin resistance, many blood biomarkers, type II

diabetes, Brugada syndrome, thromboembolism).

These local and global explanations together provide further evidence that self-

supervised pretraining with ContIG is able to learn semantically meaningful image

representations without the need for manual annotations.

5.4.7 Ablation Study
For the set of experiments reported in this section, we conduct ablations for the

hyper-parameters of training batch size (𝑏) and lambda (𝜆) from Eq. (5.1), used in

the pretraining phase using our method ContIG. For the batch size, due to memory

limits of available GPUs, 64 multimodal samples is the maximum we could fit,

i.e. each sample in the batch contains an image with its corresponding genetic

modalities. Nevertheless, ContIG outperforms state-of-the-art contrastive methods

in the evaluated downstream tasks as shown in Tab. 5.1 and Tab. 5.2. In fact, this can

be viewed as an advantage of training with ContIG, as it does not strictly require

large batch sizes as opposed to SimCLR [Che+20a]. Therefore, for the purposes

of this ablation study, we try smaller batch sizes of 16 and 32. As anticipated, we

observe a slight drop in downstream performance (≤ 2 p.p.) as Sec. 5.4.7 shows.

For varying the values of lambda, for which we use the value 0.75 by default. In

Sec. 5.4.7 we also evaluate the values of 0.25 and 0.5, and we find that the results

are comparable to those obtained with original value of lambda (≤ 1 p.p.). The

comparable nature of the results when varying these hyperparameters – both affect

the results with ≤ 2 p.p. –, somehow show that our method exhibits an improved

robustness to smaller batch sizes and lambda values.

5.5 Discussion
In this Chapter, we presented ContIG, a self-supervised representation learning

algorithm for imaging-genetics datasets. Our evaluation results show that including

genetic information in the pretraining process can considerably boost performance

of image models in a variety of downstream tasks relevant for clinical practice and

genetic research. While we believe this may be the reason why ContIG outperforms

image-only self-supervised baseline methods –in some tasks by a margin–, but we
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Batch (𝑏) Lambda (𝜆) APTOS RFMiD PALM Cardio. Risk Pred.

QwKappa ↑ ROC-AUC ↑ Dice ↑ MSE ↓ ROC-AUC ↑
64 0.75 86.33 93.92 77.56 3.180 72.65

64 0.5 84.13 93.52 77.32 3.167 73.08
64 0.25 84.91 93.77 76.64 3.174 72.37

32 0.75 84.01 93.41 76.59 3.182 72.11

16 0.75 84.09 92.77 76.40 3.296 67.41

Table 5.5: Ablation results for batch-size (𝑏) and lambda (𝜆). Note that we vary one

hyperparameters while fixing the other.

also conjecture that the reliance of self-supervised baselines on image augmen-

tations alone may be disadvantageous in medical applications due to the more

uniform nature (e.g. color distributions) of medical images compared to in nat-

ural images. We investigate how to improve the nature and types of employed

augmentations in these algorithms in next Chapter.

We also attempt to assess the explainability of the learned representations by

ContIG through performing a GWAS study and adapting attribution-based inter-

pretability methods. Both aim to understand the relationship between imaging and

genetic modalities in more detail and find interesting associations. This form of

explainability by identifying imaging-genetic associations (or correspondences)

was deemed a target (or a motivation) for our method. By cross-referencing the

associations uncovered by ContIG with resources from literature, we find they are

relevant. The significance of this result lies in that methods similar to ContIG may

help discover novel genetic associations for traits visible in medical scans.

Naturally, there are a number of limitations for our proposed approach. First,

ContIG requires datasets that capture both imaging and genetics data, and is thus

not applicable to pure-imaging datasets. In recent years, however, an increasing

number of imaging-genetics studies have started, and proprietary datasets of joint

imaging and genetics data are available in some large-scale health systems. With the

decreasing prices in both imaging and genotyping technology, this trend is likely

to continue further. A second limitation lies in the potentially limited application

fields of our method. ContIG is not applicable to standard natural images, as there

are no corresponding genetic features. On the other hand, large-scale biobanks

often include multiple imaging modalities, such as different MRI and histopathology

images. Our method is also applicable to imaging-genetics applications in live-stock

and plant breeding, and may also be useful in basic science studies.

Unfortunately, most large-scale imaging-genetics datasets to date are conducted
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in European and Northern American countries, and only few studies are open

to the public. Therefore, one limitation of the presented results is that the UKB

mostly consists of populations with European ancestry, and may carry a biased

representation. We have shown that ContIG nevertheless improves downstream

tasks in other populations, e.g. in APTOS (collected in India), RFMiD (collected in

India), and PALM (collected in China). We deem extending ContIG to other medical

imaging datasets and genetic populations a future work.
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Figure 5.4: Global explanations for genetic features in ContIG (PGS only). Recorded is the

mean absolute attribution per feature, aggregated over 1000 individuals, and the 30 PGS

with highest associations are shown. Repeated traits (e.g. Melanoma) are due to multiple

different risk scores published in the PGS catalog. Figure source [Tal+22a], reprinted with

permission.
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Figure 5.5: Local explanation attributions (signed) of genetic features for one image-PGS

pair. Only the risk scores with highest values in either positive direction are shown. Retinal

fundus image reproduced by kind permission of UK Biobank ©. Figure source [Tal+22a],

reprinted with permission.
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6 Self-supervision from Ho-
mogeneous Medical Scans

This chapter extends own work in [Tal+22b], published in the 12
th
volume of the

Diagnostics Journal in 2022. Therefore, some figures, tables, and statements have

been quoted verbatim or reproduced with permission.

6.1 Introduction

Medical scans normally exhibit more uniform appearance characteristics than nat-

ural images, such as more coherent color density distributions. This is consistent

within each medical imaging modality (see Fig. 6.1) or even across different imaging

modalities (see Fig. 2.7). Most medical scans use a single channel to capture colors,

and therefore appear in levels of gray-scale. This homogeneous nature of medical

scans may become an obstacle for several state-of-the-art contrastive learning

methods, which rely on image transformations (or augmentations) to create image

views, which may be for positive or negative samples, depending on the chosen

loss. Ideally, these contrastive methods aim to learn data representations that are

invariant to the chosen augmentations. However, most employed image augmenta-

tions assume natural imaging inputs, and are designed to operate on such domains

– deeming many of these augmentations incapable to learn rich representations

from medical images. As a result, to better adapt such self-supervised contrastive

methods to such homogeneous medical scans, we propose several domain-inspired

changes to the employed image augmentations in training in this Chapter. As a test-

bed for these proposed changes, we evaluate on dental X-Rays, namely Bitewing

Radiograph (BWR) images, for the reasons described below.

Dental caries is the most prevalent health disease, affecting more than three

billion people worldwide [Kas+17]. The estimated global annual total of conducted

dental x-ray examinations is in the scale of 520 million [Cha01]. Nevertheless,

almost all machine learning applications in the dentistry domain followed the

supervised learning paradigm, e.g. [Kha+21; Kim+19a; Set+20]. Notably, these

studies report diagnostic performances that are considered to be clinically useful.

However, the referenced datasets used in these studies are only scratching the

surface, with respect of being comprehensive or representative. For instance,

[Kim+19a] used 12,179 labeled panoramic radiographs, whereas [Set+20] used only
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Figure 6.1: Bitewing Radiograph (BWR) Examples. Collected in own study [Tal+22b].

20 CBCT volumes. This in turn hinders transferabilty and generalizability, and

finally the dissemination of machine learning applications into clinical settings.

For diagnosing dental caries, the clinicians commonly analyze Bitewing Radio-

graphs (BWRs), a specific medical imaging modality from the X-Ray family that

typically capture the teeth from the jaw sides (see Fig. 6.1). Notably, the assessment

of BWRs by dentists is associated with low sensitivity and shows considerable

inter-examiner variation [STP15; Wal+21]. The growing quantities of dental data

and the challenging nature of dental caries detection motivated employing deep

learning techniques for this task [BA21; Can+20; Kim+19a; MK20]. Additionally,

the high costs associated with labeling caries in BWRs, make this domain a perti-

nent test-bed for self-supervised representation learning algorithms. For instance,

annotating the curated test set used in this Chapter (see Sec. 6.3.1) required 71

man-hours approximately. At the same rate, annotating the full training dataset

would have required more than 7600 man-hours (approx. 950 work-days).

To evaluate our proposed augmentation changes to the chosen self-supervised

learning methods, we assess both the diagnostic performance of the model when

fine-tuned into dental caries classification tasks and the effects on label-efficiency.

Our experimental results demonstrate the obtained gains, including improved

caries classification performance (6 p.p. increase in sensitivity) and improved label-

efficiency. In other words, the resulting models can be fine-tuned using fewer labels;

using as few as 18 annotations can produce ≥45% sensitivity, which is comparable

to human-level diagnostic performance.
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6.2 Methods

6.2.1 Self-Supervised Learning Algorithms

In this section, we present the employed self-supervised algorithms in this Chapter

used for pretraining on raw BWR images. Each algorithm results in an encoder

model that can be fine-tuned on subsequent downstream tasks, here dental caries

classification. Three algorithms were employed, which all aim to learn semantic

representations that are invariant to the augmentations applied to input sam-

ples [Che+20a; Gri+20; Zbo+21]. While we mentioned these methods briefly in

Sec. 2.3.2, we elaborate more on them in this Chapter. These approaches build upon

the cross-view prediction framework introduced in [BH92], e.g. predicting random

crops of the same image from each other. Such approaches solve the problem in

the feature space, i.e. the representation of an image view should be predictive

of another view. However, predicting in feature space directly can lead to col-

lapsed representations, i.e. a trivial constant solution across views. Therefore, these

algorithms differ in the techniques used to avoid such collapsed representations.

SimCLR

First proposed by [Che+20a], this method follows the Contrastive family of algo-

rithms [Hen20; OLV18]. At the core of these algorithms is the Noise Contrastive

Estimation (NCE) loss [GH10], which aims to maximize the mutual information

between related signals, in contrast to other signals, in the embedding space. In or-

der to circumvent the aforementioned collapsed representations problem, SimCLR

reformulates the embedding prediction task into one of classification. To achieve

that, it discriminates (classifies) artificially created “positives” and “negatives” from

unlabeled samples, as illustrated in Fig. 6.2a. In this context, the terms “positive” and

“negative” have no relation to manually acquired human labels whatsoever; here,

they indicate views of the same image (positives) and of other images (negatives).

SimCLR learns semantic representations from unlabeled data as follows. The

image dataset is processed in batches, where positive and negative samples are

created from each batch. For each input image, a pair of positive images is created

using image augmentations. The negatives are then the remaining images in

the batch. All images are then processed by the encoder network, to produce

a vector representation, i.e. embedding, for each image. We employ a CNN for

the encoder architecture, but other architectures such as image-transformers are

possible. During training, the encoder is replicated to process pairs of samples,

constituting a Siamese architecture [Bro+93]. Each representation is then processed
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by a small projection head, which is a non-linear multi-layer perceptron (MLP)

with one hidden layer. Finally, the NCE loss computes the cosine similarity across

all samples. This loss encourages the similarity between positive samples to grow

larger (attracts their embeddings in the feature space), and the similarity to negative

samples to become smaller (repels their embeddings in the feature space).

BYOL

BYOL [Gri+20], which is short for Bootstrap Your Own Latent, attempts to avoid

the mechanism of negative mining (or sampling) used in SimCLR. The motivations

for such avoidance are two folds. First, it may be computationally expensive, as

the NCE loss may require a large number of negative samples to learn rich repre-

sentations. SimCLR [Che+20a] addresses this by using larger batch sizes (≥512).
Second, the semantics of negative samples may require special treatment [Wu+17]

to ensure they encourage learning rich representations. Therefore, BYOL intro-

duces asymmetric parameter updates to the encoder architecture as an alternative

for negative sampling. In other words, the two encoder models in the Siamese

architecture, illustrated in Fig. 6.2b, do not have identical weights.

The Siamese architecture processes a pair of augmented views of each image,

similarly to SimCLR. However, the architecture in BYOL is modified to be asymmet-

ric as follows. The first online network is trained to predict the representations of

the other target network. Here, the weights of the target network are an exponen-

tial moving average of the online network. This means that the actual parameter

updates, i.e. gradients of the loss, are applied on the online network only. This

is ensured by a “stop gradient” technique on the target network, which has been

found, empirically, to be essential [CH21] to avoid collapsed representations. The

overall training loss is the Mean Squared Error (MSE) between the predictions of

online and target networks. Note that both networks use a projection head similar

to SimCLR’s. After training, only the encoder of the online network is kept, and

everything else is discarded.

Barlow Twins

This method, which was first proposed in [Zbo+21], and illustrated in Fig. 6.2c,

avoids both negative sampling of SimCLR and the asymmetric updates of BYOL.

It rather relies on a statistical principle called redundancy reduction to learn rep-

resentations. The algorithm steps are the following. Assuming a batch of images,

from which two sets of augmented versions are created by applying different aug-

mentations. These versions are processed concurrently with a Siamese encoder,
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Figure 6.2: Illustration scheme of the three self-supervised algorithms and how to fine-

tune the resulting encoder CNN. (a) SimCLR relies on attracting the views of each image

(positives) together and repelling them from the views of other images (negatives). (b)
In BYOL the target network calculates moving averages of the online network, which is

updated with loss gradients. (c) Barlow Twins computes the cross-correlation matrix of

two batches of image views and minimizes its difference to the identity matrix. (d) The
obtained CNN encoder is fine-tuned on input tooth images for caries classification. Figure

source [Tal+22b], reprinted with permission.
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one set per encoder replica. Here, similar to SimCLR, the encoder weights are

replicated, and the representations are projected with a projection head. Then, the

cross-correlation matrix of the two sets of the resulting representations is computed.

Each entry of this matrix encodes the correlation between the corresponding repre-

sentation entries. Finally, the overall loss is defined as the difference between the

computed cross-correlation matrix and the identity matrix. The intuition behind

this is that it encourages the representations of positive image views to be similar,

while minimizing the redundancy between their components. Explaining the name

of the redundancy reduction principle. After training, one encoder replica is kept

and utilized in subsequent downstream tasks, similar to SimCLR.

6.2.2 Modified Image Augmentations for Self-Supervision
from Medical Scans

As explained earlier, many state-of-the-art self-supervised algorithms employ image

augmentations in learning data representations that are invariant to the chosen

augmentations. In particular, these augmentations are used in creating positive

samples and also negative samples in contrastive methods. As shown previously

in [Che+20a; Gri+20; Zbo+21], the choice of image augmentations considerably

influences downstream performance. In our experiments, we find that the default

augmentations used by these methods fail to learn semantically rich data repre-

sentations from medical scans. In other words, the resulting representations do

not improve downstream task performance, here in caries classification results. As

mentioned earlier, we believe the nature of the data has a role in this, i.e. medical

images exhibit a more uniform nature than natural images, e.g. color distributions.

Hence, we employ a modified set of image augmentations, which better fits the

more homogeneous medical imaging domain.

As Tab. 6.1 shows, the employed image augmentations by [Che+20a; Gri+20;

Zbo+21] are stronger than the ones we use. As confirmed by [Che+20a], such

strong augmentation regimes were essential to learn representations from natural

images. On the contrary, we find that less aggressive image transformations can

learn better data representations from medical images. In particular, the reduced

probabilities of color adjustments benefit the learned representations the most in

our evaluations. In fact, we find that applying the Gaussian Blur augmentation

is detrimental to the learned representations in our case. Note that some of the

augmentations in the original set are not applicable in our case, since they assume

colored image inputs, which is not our case. Finally, different from the original
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Table 6.1: Comparing the employed set of image augmentations with the original one used

by [Che+20a; Gri+20; Zbo+21]

Image Augmentation Modified Set Original Set

Random resized cropping (% of input size) 50–100% 8–100%

Random horizontal flip (probability) 50% 50%

Random rotation (angle) -20
◦
– 20

◦
–

Image Brightness (probability) 20% 80%

Image Contrast (probability) 10% 80%

Image Saturation (probability) 10% 80%

Image Hue (probability) – 20%

Image Color to Grayscale (probability) – 20%

Gaussian Blur – 50%

set of augmentations, we apply image rotation with small angles, which we find

beneficial in our case.

6.3 Experimental Results
In this section, we report the evaluation results of the supervised caries classification

on tooth segments. Notably, for training, i.e. fine-tuning pretrained models, we use

EHR labels but all of the reported metrics are computed on the curated test set of

343 BWRs. We evaluate whether fine-tuning pretrained models via self-supervision

improves the diagnostic performance of the classifier compared to a baseline model

that was initialized with random model weights. In addition, we assess if self-

supervised pretraining improves the label-efficiency by successively increasing the

size of labelled data for training the model. Both Secs. 6.3.1 and 6.3.2 have been

quoted verbatim from own work [Tal+22b], and only slightly modified.

6.3.1 Dataset
The dataset was collected by three dental clinics in Brazil, which are specialized in

radiographic and tomographic examinations. The dataset consists of 38,094 BWRs

taken between 2018 and 2021. In total, 9779 patients with an average [min–max, sd]

age of 34 [3–88, 14] years constitute the sample. The average [min–max, sd] number

of scans per patient is 4 [1–11, 1]. We preprocess the radiographs by extracting

individual tooth images using a helper model, a deep-learning based tooth instance-

segmentation model (unpublished). Each detected tooth is then cropped from the
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BWR using a bounding box that fully contains the tooth. The procedure resulted

in a dataset of 315,786 cropped tooth images. Out of those, we observe 49.9% of

molars, 40.5% of premolars and 9.6% of canines and incisors, respectively. It is

noteworthy that the tooth classification with the helper model may not be perfect,

but as we are interested in the tooth as an object, we ignore these imperfections in

automated tooth labeling. Tooth-level caries labels were extracted from electronic

health records (EHRs) that summarize the patient’s dental status. The dataset has a

caries prevalence of 19.8%. Although EHR-based ground truth labels are known to

come with uncertainties and biases [Gia+18], we find that they provide sufficiently

rich signals (semantically) when fine-tuning self-supervised models. For model

evaluation purposes, a hold-out test set was curated by dental professionals. The

test set consists of a random sample of 343 BWRs. The average [min-max, sd] age of

the patients within the test set is 33 [5–80, 13]. The BWR samples were annotated

for dental caries by four independent dentists. These annotations were reviewed

by a senior dentist (+13 years of experience) to resolve conflicts and establish the

ground truth in the test set. After extracting tooth-level images with the helper

model, the test set contains 2846 tooth samples with 29.9% caries prevalence (850

positive and 1996 negative). We observe 49.2% molars, 40.5% premolars, and 10.3%

canines and incisors, respectively. We ensure that the set of patients is independent

in the training and the test datasets.

6.3.2 Implementation Details

All images were resized to the resolution of 384 × 384 pixels. We employ the

Resnet-18 [He+16] architecture as the neural network encoder. During the self-

supervision stage only, the used projection head has an output dimension of 128.

For all training procedures, we employ the Adam optimizer [KB14a]. During the

self-supervised pretraining stage we train with batch sizes of 224 images and set

the initial learning rate to 0.001, while using cosine annealing [LH17]. After the

self-supervised pretraining stage, the resulting encoder is employed in supervised

dental caries classification, as illustrated in Fig. 6.2d. To that end, a fully-connected

layer with output units equal to the number of classes is added on top. In this

stage we train with a batch size of 92 images, set a fixed learning rate of 0.0001

and use the cross-entropy loss to learn from the EHRs labels. We do not tune the

classification threshold and we use a confidence score of 0.5 to discriminate between

the positive (has caries) and the negative prediction label. As evaluation metrics

we compute ROC-AUC, sensitivity, and specificity. Our implementations are in

Python, using the libraries PyTorch v1.10.0, Pytorch-Lightning v1.5.4,
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and Lightly [lig]. We ensure reproducibility of results by setting a unified random

seed of 42 for all scripts and workers.

6.3.3 Transfer Learning (Fine-Tuning) Results
In this set of results, we report on the performance of models that were fine-

tuned on the full image dataset (315,786 tooth segments extracted from 38,094

BWRs) using the automatically-generated EHR labels. The models are initialized

at the beginning of the fine-tuning phase, with model weights obtained by the

self-supervised methods SimCLR, BYOL and Barlow Twins, described in Sec. 6.2.1.

In terms of baselines, we compare to:

• A model with identical architecture (Resnet-18) trained from scratch, i.e.

whose weights are initialized randomly.

• The set of models pretrained with the same three algorithms but with the

original set of image augmentations from [Che+20a].

The evaluation results for this set of experiments are shown in Tab. 6.2.

The highest sensitivity, with 57.9% was observed with Barlow Twins, followed

by SimCLR and BYOL, with 57.2% and 54.6%, respectively. All using our models

pretrained with our modified augmentation types. These values are considerably

higher than 51.8%, obtained by the baseline model trained from scratch. They also

outperform the sensitivity results obtained by the models trained using the original

set of augmentations proposed in [Che+20a]. For specificity all models perform

similarly. With respect to the ROC-AUC values, all pretrained models with our

modified augmentations are close to each other (73.3%, 73% and 73.4% for SimCLR,

BYOL and Barlow Twins, respectively) but consistently higher than the baselines.

Method Sensitivity Specificity ROC-AUC

Baseline (from scratch) 51.80 91.30 71.50

SimCLR (original augmentations) 52.29 89.14 72.09

BYOL (original augmentations) 52.72 90.52 71.89

Barlow Twins (original augmentations) 53.51 88.71 72.48

SimCLR (new augmentations) 57.20 89.30 73.30

BYOL (new augmentations) 54.60 91.30 73.00

Barlow Twins (new augmentations) 57.90 88.90 73.40

Table 6.2: Caries classification results when fine-tuning on the full caries classification

training set. We highlight in bold the best models.
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6.3.4 Data-Efficiency Results

The results in this section demonstrate the obtained gains in data efficiency. For

that purpose, we report on the performance of caries classification for varying

fine-tuning dataset sizes up to 10% of the total dataset, which is almost ∼3.8K BWRs

or 30K tooth segments. In detail, the subset sizes we considered are as follows in

terms of No. Teeth/ No. BWRs: {152/18, 305/37, 1.5 K/190, 3 K/380, 15 K/1.9 K,

30 K/3.8 K}. Fine-tuning in all experiments is done for a fixed number of epochs

(50 epochs each). For each subset, we compare the performance of the fine-tuned

models to the following baselines:

• The model with an identical architecture (Resnet-18) trained from scratch,

i.e. whose weights are initialized randomly.

• The set of models pretrained with the same three algorithms but with the

original set of image augmentations from [Che+20a].

We repeat this process for each subset five iterations to account for random sampling

effects, i.e. the samples at each iteration are chosen randomly, resulting in ∼20%
caries prevalence, which is close to the actual prevalence of the full dataset of 19.8%.

As shown in Tab. 6.3, the models pretrained with self-supervised algorithms

accompanied by our modified augmentations outperform the baselines in terms

of sensitivity. Interestingly, the model pretrained with the Barlow Twins and our

proposed augmentations obtains a sensitivity value of 46.28% even when fine-tuned

with only 18 BWRs.

Method | #Teeth/#BWRs 152/18 305/37 1.5K/190 3K/380 15K/1.9K 30K/3.8K

Baseline (from scratch) 32.87 41.74 42.45 46.61 44.78 50.19

SimCLR (original augmentations) 33.21 42.76 44.87 46.77 46.86 50.55

BYOL (original augmentations) 34.19 43.62 45.18 47.65 48.56 49.25

Barlow Twins (original augmentations) 34.68 44.42 45.41 47.01 47.44 51.22

SimCLR (new augmentations) 40.02 50.05 46.40 52.99 48.96 54.80
BYOL (new augmentations) 44.78 48.35 60.92 53.88 55.32 51.18

Barlow Twins (new augmentations) 46.74 45.01 51.21 51.28 53.42 52.85

Table 6.3: Caries classification results when fine-tuning on the full training set. We

highlight in bold the best models. The results are reported in terms of Sensitivity.
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6.4 Discussion
In this chapter, we assess the effect of self-supervised pretraining on a real-world

supervised learning task, by training caries predictionmodels on EHR-based labelled

data and evaluating them on a test set with manually acquired ground-truth labels.

We show that for the downstream task of caries classification, pretraining with self-

supervised algorithms provides a considerable performance boost, especially for the

sensitivity of the model. All three presented methods outperformed the baselines,

and added up to 6% in sensitivity (see Tab. 6.2). The effectiveness of leveraging

pretrained models in a transfer learning scheme for boosting the performance of

prediction tasks is a popular practice in caries classification tasks [Far+20; Zhu+20b].

In this work, however, we show that pretraining can be effectively done on domain-

specific image data via self-supervision and does not have to stem from large open

(non-medical) image datasets [Den+09; Kuz+20; Lin+14].

This chapter also highlights that self-supervised models outperform baseline

models trained from scratch with a significant margin when using few training

samples, particularly in terms of sensitivity. A gain that is usually called label-

efficiency. In a low-data regime only as few as 18 BWR samples (=152 tooth

images) yields ≥ 45% sensitivity, which is competitive compared to the diagnostic

performance of domain experts, who reportedly show sensitivities of around 47%

(95% confidence interval (CI) 40% to 53%) [Wal+21]. Hence, by using self-supervision

techniques, the annotation process and data-efficiency may be improved as only a

fraction of labeled data is required to achieve competitive results.

Lastly, in terms of methodological aspects, this chapter illustrates the need

to choose appropriate image augmentation types when pretraining with self-

supervised (contrastive) learning methods. Our empirical results in Tabs. 6.2 and 6.3

support choosing domain-inspired augmentation techniques, rather than relying

simply on default augmentations used in these methods. In fact, the default augmen-

tation types used by existing contrastive methods are mostly based on optimizing

the results on natural imaging benchmarks, such as ImageNet [Den+09].

The results presented in this chapter come with a number of strengths and

weaknesses. First, the training dataset contains more than 30 K BWRs and their

labels (used for the fine-tuning stage) are based on EHR texts. EHR data is fairly

abundant in dentistry. However, EHR-based labels are associated with uncertainties

and biases [Gia+18]. In other words, the usage of labels extracted from EHRs

may be problematic, as they stem from routine care and are affected by biases,

incompleteness, inconsistencies, and limited accuracy. On the other hand, this is

“real” data as it is stored in large amounts in data silos all over the world. Therefore,

making use of this treasure trove of data is an advantage, despite the biases and

105



Chapter 6 Self-supervision from Homogeneous Medical Scans

uncertainties associated with it. Second, the caries classification model is trained on

the tooth level, even though the raw image data in the used dataset is in Bitewing

(BWR) format, i.e. each image contains multiple teeth. As a downside, the step

to preprocess these images to extract teeth samples requires an understanding of

the tooth as an object on the BWR. To this end, we use a helper pretrained object

detection model to crop tooth segments from BWRs.
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This thesis investigates how to exploit the ever growing amounts of unlabeled

medical images in learning semantic data representations, a feat that aims to mit-

igate the costs of expert annotation required. To that end, we propose to use

the self-supervised learning scheme to harness unlabeled samples for representa-

tion learning, followed by an annotation-efficient downstream task solving stage.

Nevertheless, we identify multiple unique and inherent characteristics of medical

images that deem representation learning from medical imaging with existing

self-supervised solutions more challenging. In particular, we utilize the charac-

teristics of multimodality (in chapter 3), multi-dimensionality (in chapter 4) and

homogeneous density distributions (in chapter 6) in medical images. Also, we fuse

knowledge about disease patterns from medical scans with genomic data modalities

(in chapter 5) in an attempt to create a more holistic view on human disease. All

of our proposed self-supervised methods in this thesis aim to address the chal-

lenges associated with learning from medical scans. In general, the experimental

results obtained when pretraining with our proposed approaches exhibit both im-

proved downstream task performance and annotation-efficiency. In other words,

initializing deep neural network models with features learned with our methods

significantly reduces the quantities of required annotations.

7.1 Findings and Limitations

We briefly summarise the findings and limitations of each chapter in this thesis.

chapter 3 proposed a multimodal Jigsaw puzzle-solving task, which exploits

multiple medical imaging modalities, e.g. MRI and CT, to learn data representations

in a self-supervised manner, even when these modalities are unregistered. The

proposed multimodal puzzles outperform their single-modal counterparts, and are

also more computationally efficient, thanks to the Sinkhorn operator. As part of

this framework, a cross-modal conversion (generation) method is employed, which

addresses real-world imagingmodality imbalance issues. While the empirical results

are consistent with the gains mentioned above, the main limitation lies in that it

assumes multimodal imaging inputs. However, one can circumvent this limitation

by utilizing image augmentation techniques to create other image views [TKI20],
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and we show that using a cross-modal generation step with CycleGAN is able to

mitigate this shortage of multimodal images.

In chapter 4, we show that designing self-supervised tasks that operate on

the 3D spatial context proves more effective than the sub-optimal 2D context for

learning representations from unlabeled 3D images. Furthermore, we observe

performance gains when pretraining models on a large unlabeled medical imaging

corpus different from smaller downstream datasets, suggesting alternatives for

transfer learning from ImageNet features. However, a key limitation for 3D deep

learning is the increased computational and memory requirements, prompting

the search for computationally-efficient network architectures. We mention a few

examples next section. The alternative being utilizing more advanced hardware

(GPU) with larger memory capacities.

chapter 5 presented ContIG, a self-supervised contrastive representation learn-

ing algorithm for imaging-genetics datasets. We show the benefits of including

genomic modalities in conjunction with medical images in the self-supervised

pretraining stage, by evaluating on a variety of tasks relevant for clinical practice

and genetic research. The latter would benefit the most from the proposed explain-

ability mechanism for learned representations by ContIG through GWAS studies

and attribution-based interpretability methods. This form of explainability by iden-

tifying imaging-genetic associations was in fact a target for ContIG. Here, the main

limitation lies in the requirment of datasets with imaging and their corresponding

genetic data for pretraining with ContIG. Nevertheless, an increased number of

imaging-genetics studies on humans are being conducted, and also in live-stock

and plant breeding. We should mention here that even though our evaluation

experiments focused on combining medical images with genetics in chapter 5, we

ensure ContIG is able to combine medical images with other types of modalities,

such as markers of blood samples, or even phenotypic descriptions, e.g. a person’s
medical history. This is made possible in the method design by making minimal

assumptions about input data modalities.

In chapter 6 we illustrate the effect of self-supervised methods on a downstream

task from the field of dentistry, where medical imaging plays a vital role in clinical

practice. Namely, we evaluate on caries prediction (classification) models. In this

context, we find that image augmentation techniques employed by existing self-

supervised algorithms do not learn rich representations from medical scans. Hence,

we show how domain knowledge can be used to adapt the types of augmentation

techniques. The results also highlight that fine-tuning self-supervised models

with noisy and unreliable EHR-based labels is possible. This can be viewed as

both a strength, as it further reduces manual annotation efforts, but also is a
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limitation, as labels extracted from EHRs may be affected by biases, incompleteness,

inconsistencies, and limited accuracies.

7.2 Applications and Future Work
This work has an array of practical applications.

First and foremost, the continuously growing numbers of medical scans create

a natural workload on human radiologists, justifying the increasing adoption of

computer-aided diagnosis (CAD) and detection systems [Doi07]. These systems,

in particular, can benefit the most from the self-supervised methods proposed

in this thesis. Mitigating the huge requirements on manual expert annotation is

the key target of the methods developed in this work, and is a fundamental step

to improve the adoption of deep learning methods in CAD systems and harness

their human-level performances in many downstream tasks. With the continuous

digitization of medical images, the hope that physicians and radiologists are able to

instantly analyze them with machine learning algorithms is slowly shaping as a

reality. Medical imaging allows instant insights into human body organs, thus the

growing attention from both machine learning and medical communities.

Second, utilizing the aspect of multimodal images in self-supervised pretraining

has a direct impact in the medical imaging domain, as shown in chapter 3, since

medical imaging modalities capture complementary aspects of organs and tissues.

Certain disease phenotypes are only visible in specific types of imaging modalities,

such as Brain Tumor in T2 MRI, and thus training models to combine knowledge

from several medical imaging modalities improves their downstream performance.

Nevertheless, the aspect of multimodality in imaging and related sensory data

has applications in robotics and autonomous driving. Most autonomous vehicles

exploit a variety of sensors [RBZ22], including color with vision cameras, depth or

thermal cameras, LiDARs, and RADARs.

Third, due to technological advancements in 3D sensing, and the growing number

of its applications, e.g. in Robotics, CAD imaging, Geology, and Medical Imag-

ing, the attention to 3D deep learning has been growing rapidly in the past few

years [Ioa+17]. Our 3D self-supervised algorithms proposed in chapter 4 can im-

prove annotation-efficiency of 3D deep learning across its application domains.

Here, however, relying simply on existing architectures, e.g. convolutional neu-

ral networks, may incur large computational costs. Therefore, a theme we deem

critical is the search for more computationally-efficient architecture alternatives,

such as Shift blocks[Wu+18a], Squeeze-and-excitation blocks [HSS18], and Fire

modules [Ian+16]. Another approach to reduce the model complexity is by uti-
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lizing model compression techniques, such as by pruning [HMD15; Ian+16] and

sparsification [FC18].

Finally, pretraining with our method ContIG presented in chapter 5 has clear

applications in domains where imaging-genetic associations are important. This

includes human healthcare, as the majority of human diseases have genetic roots.

Understanding the role of genetics in how disease traits evolve in living organisms

can help in early detection or even prevention. In addition, applications of live-stock

and plant breeding can considerably benefit from the discovered associations by

ContIG, when trained on relevant corpora. After all, breeding plants found to be

economically or aesthetically desirable can only be done with a comprehensive

understanding of their genetic predisposition [Yan+20]. Nevertheless, as men-

tioned above, we ensure ContIG is able to process input data modality types other

than genetics in conjunction with images, such as biomarkers or medical history,

a direction we deem essential in the future of machine learning in patient healthcare.

;<
This thesis presents a framework, or a blueprint, for how to exploit raw unlabeled

data samples to reduce human annotation required. By viewing all the methods

as utilizing complementary aspects of input data, one can integrate knowledge

from multiple angles. After all, patient data is in fact multi-modal; a single patient

can have several medical imaging modalities, some of which are in 3D, and they

may have genetic samples and clinical data as well. Transitioning to the patient-

level by combining knowledge from all existing modalities is the cornerstone of

personalized medicine, which may only become a reality by exploring methods to

create such holistic views on patients.
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A.1 Model Training for all tasks
Input preprocessing. For all input scans, we perform the following pre-processing

steps:

• First, we create 2-dimensional slices by navigating the scans from all datasets

over the axial axis (𝑧-axis).

• We resize each slice to a resolution of 128 × 128 for samples from BraTS,

256 × 256 for both Prostate and CHAOS.

• Then, each slice’s intensity values are normalized by scaling them to the

range [0, 1].

Training details. For all tasks, we use Adam [KB14b] optimizer to train our mod-

els. The initial learning rate we use is 0.001 in puzzle solving tasks, 0.0002 in cross-

modal generation tasks, and 0.00001 for segmentation and regression tasks. The net-

workweights are initialized from aGaussian distribution ofN(𝜇 = 0.1, 𝜎 = 0.001) in
puzzle solving and segmentation tasks, and from the distributionN(𝜇 = 0, 𝜎 = 0.02)
in the cross-modal generation task. An 𝐿2 regularizer with a regularization constant

𝜆 = 0.1 is imposed on the network weights in puzzle solving and downstream tasks.

In terms of training epochs, we train all the puzzle solving tasks for 500 epochs, the

cross-modal generators for 200 epochs, and all fine-tuning on downstream tasks

for 50 epochs.

Network architectures. All of our network architectures are convolutional,

and they vary in small details per task:

• For jigsaw puzzle solving tasks: we use 5 convolutional layers, followed by

one fully-connected layer and one Sinkhorn layer.

• For downstream segmentation tasks: we use a U-Net [RFB15] based archi-

tecture, with 5 layers in the encoder, and 5 layers in the decoder. When

fine-tuning, the weights of the encoder layers are copied from a pretrained

model. The decoder layers, on the other hand, are randomly initialized. In

terms of training losses in these tasks, we utilize a combination of two losses:
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i) weighted cross-entropy, ii) dice loss. We use the same importance to both

losses in the total loss formula.

• For cross-modal generation tasks: as mentioned earlier, we largely follow the

architecture of the CycleGAN [Zhu+17] model. For the generators, we use the
Johnson et al.’s [JAF16] architecture. We use 6 residual blocks for 128 × 128
training images, and 9 residual blocks for 256 × 256 or higher-resolution

training images. With regards to the network discriminators, we utilize the
PatchGAN [LW16] discriminator architecture, which processes 70 × 70 input
patches.

Processing multi-modal inputs. In Brain tumor and Prostate segmentation

tasks, the reported methods from literature use all available modalities when per-

forming the segmentation, e.g. in table 3.1 in our paper. They typically stack these

modalities in the form of image color channels, similar to RGB channels. However,

our proposed puzzle-solving method expects a single channel input at test time, i.e.

one slice with multi-modal patches. This difference only affects the input layer of

the pretrained network, as fine-tuning on an incompatible number of input chan-

nels causes this process of fine-tuning to fail. We resolve this issue by duplicating

(copying) the weights of only the pretrained input layer. This minor modification

only adds a few additional parameters in the input layer of the fine-tuned model, but

allows us to leverage its weights. The other alternative for this solution is to discard

the weights of this input layer, and initialize the rest of the model layers from

pretrained models normally. However, our solution for this issue takes advantage

of any useful information encoded in these weights, allowing the model to fuse

data from all the channels. The exact numbers of channels in each downstream

task is as follows:

• BraTS Brain Tumor Segmentation: in each input slice, the MRI 4 modalities

are stacked as channels.

• BraTS Number of Survival Days Prediction: for each input slice we also stack

the 4 MRI modalities, on top of the predicted tumor segmentation mask;

summing up to 5 channels for each input slice. The predicted masks are

produced by our best segmentation model.

• Prostate segmentation: we stack the 2 available MRI modalities in each input

slice.

In the Liver segmentation task, however, stacking the input modalities as channels

is not possible. This is due to the fact that the modalities in this task (CT and
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MR-T2) are non-registered. Hence, we process these modalities using the Joint

Learning scheme used in [Val+18]. This means we process each modality as a single

input slice. Pretrained models using our multimodal puzzles, learns to disregard

the modality type during training and testing.

Training the multimodal puzzle solver It is noteworthy that after we sample

patches from input slices, we add a random jitter of 5 pixels in each side before

using them in constructing puzzles. This mechanism ensures the model does not

use any shortcuts in solving the puzzles, thus enforcing it to work harder and learn

better representations.

Algorithm 2 provides the detailed steps of the training process of our proposed

multimodal puzzle solver. After obtaining the network parameters, the yielded

representations capture different tissue structures across the given modalities as a

consequence of the multimodal puzzle solving. Therefore, they can be employed in

downstream tasks by simply fine-tuning them on target domains.

Algorithm 2: One epoch of training multimodal puzzle solver

1: Algorithm Train Puzzle Solver
Input: list of multimodal 𝑝𝑢𝑧𝑧𝑙𝑒𝑠

Output: trained model 𝐺

2: 𝐺 ← initialize model weights 𝑤

3: foreach 𝑃 from 𝑝𝑢𝑧𝑧𝑙𝑒𝑠 do // each puzzle contains 𝑁

patches
4: foreach patch 𝑥 in 𝑃 do
5: 𝑣 ← 𝐺 (𝑥) // 𝑁-dimensional feature vector

6: 𝑉 ← concat. vectors 𝑣 // form a matrix with size 𝑁 × 𝑁
7: 𝑆 ← 𝑆𝑖𝑛𝑘ℎ𝑜𝑟𝑛(𝑉 ) // permutation matrix
8: 𝑃𝑟𝑒𝑐 ← 𝑆𝑇 .𝑃 // reconstructed version
9: 𝑙𝑜𝑠𝑠 ← 𝑀𝑆𝐸 (𝑃∗, 𝑃𝑟𝑒𝑐)
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B Experimental Details
for SSL from 3D Images

B.1 Implementation and training details for all
tasks

It is noteworthy that our attached implementations are flexible enough to allow

for evaluating several types of network architectures for encoders, decoders, and

classifiers. We also provide implementations for multiple losses, augmentation tech-

niques, and evaluation metrics. More information can be found in the README.md
file in our attached code-base. We rely on tensorflow v2.1 [ten20] with Keras
API in our implementations. Below, we provide the training details we used in

implementing our 3D self-supervised tasks (and their 2D counterparts), and when

fine-tuning them in subsequent downstream tasks.

Architecture details. For all 3D encoders 𝑔𝑒𝑛𝑐 , which are pretrained with our

3D self-supervised tasks and later fine-tuned on 3D segmentation tasks, we use

a 3D U-Net [RFB15]-based encoder (the downward path), which consists of five

levels of residual convolutional blocks. The numbers of filters in these blocks are

32, 64, 128, 256, 512, respectively. The U-Net decoder (the upward path) is added in

the downstream fine-tuning stage, and it includes five levels of deconvolutional

blocks with skip connections from the U-Net encoder blocks. For the 2D encoders,

we use a standard Densenet-121 [Hua+17] architecture, which is fine-tuned later

on 2D classification tasks. When training our 3D self-supervised tasks, we fol-

low [Che+20a] in adding nonlinear transformations (a hidden layer with ReLU

activation) before the final classification layers. These classification layers are

removed when fine-tuning the resulting encoders 𝑔𝑒𝑛𝑐 in downstream tasks.

Optimization details. In all self-supervised and downstream tasks, we use

Adam [KB14b] optimizer to train the models. The initial learning rate we use is

0.001 in 3D self-supervised tasks, 0.00001 in 3D segmentation tasks, 0.0005 in 2D

self-supervised tasks, and 0.00005 in 2D classification tasks. When we fine-tune

our pretrained encoders in subsequent downstream tasks, we follow a warm-up

procedure inspired from [KZB19] by keeping the encoder weights frozen for a

number of initial warm-up epochs while the network decoders or classifiers are
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trained. These warm-up epochs are 5 in 2D classification tasks, and 25 epochs

in 3D segmentation tasks. The alternative options we evaluated were: 1) fine-

tuning the encoder directly with a randomly initialized decoder, 2) keeping the

encoder frozen throughout the training procedure. And the 3
rd
option we followed

in the end was the hybrid approach of warm-up epochs described above, as it

provided a performance boost over the other alternatives. For segmentation tasks, in

particular, where a decoder is used in the architecture, these warm-up epochs prove

indispensable. Otherwise, training the whole model with a randomly initialized

decoder, while the encoder is not frozen, may harm the encoder representations.

Input preprocessing. For all input scans, we perform the following preprocess-

ing steps:

• In self-supervised pretraining using 3D scans, we find the boundaries of the

brain or the pancreas along each axis, and then we crop the remaining empty

parts from the scan. This step reduces the amount of empty background

voxels, as they might confuse patch-based self-supervised methods with no

additional semantic information. This step is not performed when fine-tuning

on 3D downstream tasks.

• Then, we resize each 3D image from BraTS or Pancreas to a unified resolution

of 128×128×128, and to the resolution 224×224 for 2D images from Diabetic

Retinopathy.

• Then, each image’s intensity values are normalized by scaling them to the

range [0, 1].

Processing multimodal inputs. In the first downstream task of brain tumor

segmentation with 3D multimodal MRI, we pretrain using the UK Biobank [Sud+15]

corpus, as mentioned earlier. Brain scans obtained from UKB contain 2 MRI modal-

ities (T1 and T2-Flair), which are co-registered. This allows us to stack these 2

modalities as color channels in each input sample, similar to RGB channels. This

form of early fusion [SWS05] of MRI modalities is common when they are regis-

tered, and is a practical solution for combining all information that exist in these

modalities. However, as mentioned earlier, we use the BraTS [Bak+17; Men+15]

dataset for fine-tuning, and each scan consists of 4 different MRI modalities, as

opposed to only 2 in UKB that is used for pretraining. This difference only affects

the input layer of the pretrained encoder, as fine-tuning on an incompatible number

of input channels causes this process of fine-tuning to fail. We resolve this issue by
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duplicating (copying) the weights of only the pretrained input layer. This minor

modification only adds a few additional parameters to the input layer, but allows

us to leverage its weights. The other alternative for this solution would have been

to discard the weights of this input layer, and initialize the rest of the model layers

from pretrained models normally. But we believe our solution for this issue takes

advantage of any useful information encoded in these weights. This multimodal

inputs problem does not occur in the other downstream tasks, as the inputs include

only one modality/channel.

Task specific training details.

• 3D-CPC: we follow [OLV18] in using an autoregressive network using

GRUs [Cho+14] for the context network 𝑔𝑐𝑥𝑡 , however, masked convolutions

can be a valid alternative [Oor+16].

• 3D-CPC and 3D-Exe: we use latent representation code size of 1024 in these

tasks.

• 3D-Jig and 3D-RPL: We split the input 3D images into 3 × 3 × 3 patches in
this task. We apply a random jitter of 3 pixels per side (axis).

• Patch-based tasks (3D-CPC, 3D-RPL, 3D-Jig): each extracted patch is

represented using an embedding vector of size 64.

• 3D-Exe: the 𝛼 value used for the triplet loss is 1.0.

• 3D-Jig: the complexity of the Jigsaw puzzle solving task relies on the number

of permutations used in generating the puzzles, i.e. the more permutations

used, the harder the task is to solve. We follow the Hamming distance-based

algorithm from [NF16] in sampling the permutations for this task. However,

in our 3D puzzles task, we sample permutations that are more complex with

27 different entries. This algorithm works as follows: we sample a subset

of 1000 permutations which are selected based on their Hamming distance,

i.e., the number of different tile locations between 2 permutations. When

generating permutations, we ensure that the average Hamming distance

across permutations is kept as high as possible. This results in a set of

permutations (classes) that are as far as possible from each other.

Augmentation in Exemplar. As mentioned earlier, we apply the following 3D

transformations in Exemplar: random flipping along an arbitrary axis, random
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(a) CPC 3D vs. baseline

0 50 100 150 200 250 300 350 400
Epochs

0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50
0.52
0.54
0.56
0.58
0.60
0.62

Av
g 

D
ic

e 
Sc

or
es

rpl
baseline

(b) RPL 3D vs. baseline
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(c) Jigsaw 3D vs. baseline
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(d) Rotation 3D vs. baseline
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(e) Exemplar 3D vs. baseline

Figure B.1: Pancreas segmentation: Detailed speed of convergence results per method

(blue) vs. the supervised baseline (orange). This benefit of our methods helps achieve high

results using only few epochs. Figure Source [Tal+20], reprinted with permission.

rotation along an arbitrary axis, random brightness and contrast, and random

zooming. These augmentations are utilized to produce the positive samples. We

vary the percentages of applying these augmentations using these factors: 𝛼 = 0.5

for random rotations, 𝛽 = 0.5 for color distortions (brightness and contrast), and

𝛾 = 0.2 for random zooming. When trying to omit a certain augmentation from the

list above, we observe a drop in downstream performance. This is consistent with

the findings of [Che+20a]. However, performing such transformations for high

percentages is time-consuming, hence the reduced rates to 50%. Conducting a more

thorough analysis of what types of augmentations are desirable is a future work.

B.2 Detailed experimental results
Fig. B.1 shows additional results for the proposed 3D self-supervised tasks in terms

of speed of convergence.
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from Imaging and Genetics

C.1 Training & Implementation Details

C.1.1 Datasets Preprocessing
UK Biobank Genetic Modalities

During the pretraining phase using UK Biobank data, we choose the following

feature dimensions. For the raw-SNPs, we uniformly sample every 100
𝑡ℎ
SNP from

22 Chromosomes (excluding the X and Y chromosomes), resulting in 7, 854 SNPs

per sample. For PGS, we used 481 scores for a wide variety of different traits

downloaded from the PGS Catalog [Lam+21]. We created burden scores for 18, 574

protein-coding genes [Mon+21]. These binary scores indicate whether a participant

has at least one potentially damaging rare (MAF < 1%) variant within a given gene.

Diabetic Retinopathy detection (APTOS)

In this task we use the APTOS 2019 Blindness Detection [19] dataset, which has

3, 662 retinal fundus training samples. As explained in the main paper, the labels

in this dataset have five levels of disease severity, defining five classes. However,

these classes are not mutually exclusive, as a higher disease severity of e.g. four
is also of level three and below. Hence, we employ a multi-hot encoding scheme

for the labels. For instance, class three is encoded as [1,1,1,0,0] and two as

[1,1,0,0,0], and so on. We split the dataset into three different splits of training

(60%), validation (20%), and test (20%). There is no overlap of patients across these

splits.

Retinal Fundus Disease Classification (RFMiD)

For this task, we use the Retinal FundusMulti-disease ImageDataset (RFMiD) [Pac+21],

which has 3, 200 images. The overall number of disease classes is 45. However, we

found that two classes ("HR" and "ODPM") have no positive cases, so we exclude

these two classes and only work with the remaining 43 classes. As mentioned

before, we convert these classes to multi-hot labels and solve the task as multilabel

classification. We use this dataset’s official splits for training, validation, and test.

119



Chapter C Appendix Experimental Details for SSL from Imaging and Genetics

Pathological Myopia Segmentation (PALM)

We use the Pathologic Myopia challenge dataset [Fu+19] for this task, which has 400

image samples with segmentation masks. As for segmentation labels, this dataset

has three annotated areas: i) peripapillary atrophy (available for 311 cases), ii) optic

disc (available for all cases), and iii) detachment (available for 12 cases only). Given

that detachment is rarely available, we omit it from this task and only predict the

atrophy and disc classes. We stratify the patients using the atrophy labels, to ensure

equal representation of classes in train (60% of dataset size) / val (20%) / test (20%)

splits.

Cardiovascular Risk Prediction (UKB)

To predict the cardiovascular risk factors of (sex, age, BMI, SBP, DBP, smoking status)

from retinal fundus scans, we use 102, 219 images from the UKB [Sud+15]. This

corresponds to the training split (70% of UKB dataset size). We use the remaining

scans for validation (10% of dataset size) and for the test split (20%). Each person

only appears in one split. The training for this task is performed using two models:

i) one model to classify the categorical labels (sex to binary labels {0,1}, smoking

status to binary labels too), ii) a second model to predict – solved as a regression task

– the remaining continuous variables (age, BMI, SBP, and DBP). We use two models

because the loss values of these two tasks have different scales. We preprocess

the values of the continuous factors by standardization (removing the mean and

scaling to unit variance). Finally, we impute the missing values of these factors by

using the "mean" for continuous factors and "median" for discrete factors.

C.1.2 Imaging Preprocessing

ImageQuality Control

The UK Biobank contains a relatively large number of retinal fundus images with

bad quality (e.g. completely black or extremely overexposed). To filter out extreme

outliers, we performed two steps of quality control. First, we only included images

where a simple circle-detection algorithm [IK87] could find a circle. In the second

step, we filtered out the top and bottom 0.5% brightest and darkest remaining

images.

120



Training & Implementation Details Section C.1

Image transformations

We cropped images to the circles detected in Appendix C.1.2 and rescaled to 448×448
pixels. During training, we randomly transform images by a rotation of up to 20

◦

and flip the image horizontally with a 50% probability. We also follow the common

practice of normalizing (standardizing) all the image intensities using the mean

and standard deviation from ImageNet [Den+09].

C.1.3 Genetics Preprocessing
In all our experiments we used the genetic data provided by the UK Biobank. The

three different genetic modalities require different preprocessing steps, which we

detail in this section.

Raw SNPs

The raw SNPs are a cross section of all SNPs collected on microarray chips, col-

lecting approximately 800k genetic variants in total across all chromosomes. More

information on data collection can be found at https://biobank.ctsu.ox.ac.uk/crystal/

label.cgi?id=263.

The individual SNPs are coded in additive format, i.e. 0 stands for no deviation

from the reference genome, 1 means that one of the two chromosome copies has

a deviation and the other not, and 2 means that both chromosome copies show a

deviation from the reference genome. We treated SNPs as continuous variables

(opposed to, e.g. separating them into three classes each) and imputedmissing values

by mode imputation. Since 800k feature dimensions are challenging to handle, and

SNPs are highly spatially correlated along the genome [Rei+01], we only sampled

every 100-th SNP from the full microarray. We also only included SNPs on the 22

autosomal (=not sex-specific) chromosomes, as handling sex chromosomes requires

special statistical care and leads to non-shared features between genetic males and

females. Together, this means we include 7,854 SNPs in our models.

Polygenic Risk Scores

For computing polygenic risk scores, we downloaded all PGS weight files included

in the PGS Catalog [Lam+21] (https://ftp.ebi.ac.uk/pub/databases/spot/pgs/, last

accessed October 11, 2021; at the time of writing, a large batch of new scores

has been added to the PGS catalog), a collection of published PGS. The PGS files

provide weights for a linear model to compute risk scores from the raw genetic

data. To have a large intersection of available SNPs for our UKB population and the
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weights provided by the PGS catalog, instead of using the raw microarray data from

Appendix C.1.3, we used imputed data. The imputed data uses prior knowledge

about correlations between SNPs collected and not collected on the respective

microarray (“linkage disequilibrium”, LD) to infer the missing features with high

accuracy. Imputed data was precomputed by the UKB, and more information can

be found at https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100319. Using the

imputed data, we computed 481 polygenic scores for our cohort using the PLINK

software [Pur+07], ignoring scores that gave errors or that only recorded genome

positions in a different reference genome build.

For some traits, there are multiple distinct risk scores in the PGS catalog, as

multiple independent studies have been performed on the same trait. For example,

the trait “melanoma” appears 9 times in our subset of selected PGS scores, while

other traits, such as “insomnia” appear only once. The scores contain partially

overlapping genetic markers, and the number of SNPs used for each individual

score vary from only 1 to several millions.

Burden Scores

We ran the Functional Annotation and Association Testing Pipeline [Mon+21]

to functionally annotate all the genetic variants present in the UK Biobank 200k

exome sequencing release [Szu+21]. Protein loss of function and missense variants

that were predicted to be damaging were used to construct burden scores across

all protein coding genes. We considered only rare variants with minor allele

frequencies below 1%. Of these variants 41% were "singletons", i.e. only observed

once in our sample. Specifically, each participant was assigned a binary vector

of length 18,574 corresponding to the number of protein coding genes. For every

gene, the entry in this vector is 1 if the participant harbored at least one potentially

damaging variant in that gene, or 0 if no potentially damaging variants were

observed in that gene for that participant. This coding has been applied in rare-

variant association studies in order to aggregate the effects of many rare variants

within genes, where it can boost statistical power and reduce the burden of multiple

testing[Lee+12; Mon+21].

C.1.4 Training Details
We provide the training details for all pretraining (self-supervised) and downstream

tasks in this section.

• Batch sizes: we use a unified batch size of 64 across all pretraining and

downstream tasks.
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• Optimizers: we use Adam optimizer [KB14b] in all pretraining and down-

stream tasks.

• Schedulers: during self-supervised pretraining (with ContIG and the base-

lines), we decay the learning rate with the cosine decay schedule without

restarts [LH17].

• Learning rates: we use an initial learning rate of 0.001 across all tasks.

However, we reduce the learning rate during training in the PALM semantic

segmentation task to 1 × 10−4 after 10 warum epochs.

• Weight decay: in pretraining tasks, we use a weight decay factor of 1× 10−6.
In downstream tasks, we use a weight decay factor of 1 × 10−5.

• Number of epochs: in pretraining tasks, we train all models for 100 epochs.

In downstream tasks, we fine-tune for:

– For the PALM, APTOS, and RFMiD tasks: we train all models for 50

epochs.

– For Cardiovascular risk prediction tasks: we fine-tune all models for 5

epochs (≈ 8000 steps).

• Network architectures: for the image encoder, as mentioned before, we use

a Resnet50 [He+16] architecture across all pretraining and downstream tasks.

For the genetics encoders, we vary between following choices:

– None: here we do not have any hidden fully-connected layer for the

genetics, and we feed them as inputs to the projection head directly.

– H1: we process the genetic inputs with one hidden layer of size 2048.

(followed by a ReLU activation and Batchnorm1D layers)

– H12: we process the genetics with two hidden layers, both of size 2048.

(Each layer is followed by a ReLU and Batchnorm1D)

For the projection head, we follow [Che+20a] in using two fully-connected

layers. The first has a size of 2048 and is followed by a ReLU. The second has

size of 128, which is the projection embedding size. Finally, for classification

and regression downstream tasks we add one fully-connected Linear layer

on top to perform the task. But for the PALM segmentation task, we add a

U-Net [RFB15] decoder on top of the Resnet50 encoder. For upsampling layers

in the decoder, we use transposed convolutional layers ConvTranspose2d.
• Loss functions: the used loss functions for each task are as follows:

– ContIG: for training ourmethod, we use a contrastive loss (NTXentLoss).
This loss is implemented using a cross-entropy loss, where the model is

trained to classify which sample is positive in each mini-batch. However,

our version of the NTXentLoss only does inter-modal contrasting, and
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not intra-modal. We set 𝜆 = 0.75 in this loss (Eq. 1 in the main paper),

and the temperature 𝜏 = 0.1. Note that a larger value of 𝜆 gives more

importance to image features than genetic features.

– APTOS & RFMiD: we use the binary cross-entropy loss in both tasks.

– PALM: we use a weighted combined loss of Dice-loss [Sor] (weight=0.8)

and binary cross-entropy (weight=0.2).

– Cardiovascular risk classification (sex & smoking status): we use a

binary cross-entropy loss.

– Cardiovascular risk prediction (age & BMI & SBP & DBP): we use the

Mean Square Error (MSE) loss.

– SimCLR [Che+20a]: this method uses the contrastive NTXentLoss too.

We similarly set the temperature 𝜏 = 0.1.

– NNCLR [Dwi+21]: this method uses the contrastive NTXentLoss too.

We similarly set the temperature 𝜏 = 0.1.

– Simsiam [CH21]: this method does not use negative sampling, and

instead uses a Siamese network to minimize the similarity between two

augmented views of the same image. Hence, the loss function used is

the negative cosine similarity loss.

– BYOL [Gri+20]: this method has the same loss used in Simsiam, which

is the negative cosine similarity.

– Barlow Twins [Zbo+21]: this method modifies the contrastive loss to

compute the cross-correlation matrix between two sets of embeddings,

which are for the same batch of images but with different image aug-

mentations. Then, it tries to make this matrix close to the identity

matrix.

C.1.5 Implementation Details

We implement all of our methods using Python. The libraries we rely on are

PyTorch v1.9.1, Pytorch-Lightning v1.4.8, torchvision v0.10.0, torchmetrics
v0.4.0, and Lightly [lig] (for baseline self-supervised implementations). We

also follow the reproducibility instructions for Pytorch-Lightning [Lig], i.e.
by setting a unified random seed of 42 for all scripts and workers, and by using

deterministic algorithms. We attach our source code with this supplementary

material submission.
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C.2 GWAS Analysis Details

We produced feature vectors by computing the hidden-layer embedding for each

image in the test-split of our dataset (10% of the whole dataset, 7,079 individuals).

In contrast to the main training, we only used embeddings of the left eye and only

included each individual once. Feature vectors were reduced to 10 dimensions using

a PCA. Before computing the association results, we also used an inverse-normal

transform [Sof+19] after conditioning on the potential confounders “sex”, “age”,

as well as the first 15 genetic PCs. This ensures that the residuals of the marginal

distributions are approximately normally distributed and outlier deviations from

normality don’t artificially inflate the type-1 error rate, leading to spurious cor-

relations. We performed the genetic association study with the PLINK2 software

[Cha+15], using a linear model for each of the ten dimensions individually. We

again correct for the same confounders in the linear model. Finally, we aggregate

the summary statistics of the ten individual features into a single p-value for each
SNP by using a Bonferroni-correction of the factor 10, following [Kir+21].

Genetic variants are locally highly correlated. Therefore, we group significantly

associated SNPs that are spatially close and in LD together using the PLINK [Pur+07]

clumping functionality (using parameters clump-p1 = 5 · 10−8, clump-p2 = 10
−7
,

clump-r2 = 0.1, clump-kb = 150). We reported the number of independent

associated regions returned by this procedure in the main document.

C.3 Genetic Explanation Method Validation

We ran a baseline experiment to validate that our feature explanation method

properly attributes to meaningful features. In this experiment, instead of genetic

features, we use phenotypic covariates such as age, sex, systolic and diastolic

blood pressure (SBP and DBP), which can be predicted reliably from retinal fundus

images. Additionally, we include the first 40 principal components, which mostly

capture population structure information. As control variables, we also feed five

random noise variables into the training process, which have no association with

the images at all. Fig. C.1 shows the aggregated feature explanations. As expected,

the noise variables (noise0, ... noise4) get assigned very low explanation

scores, while all other variables have considerable influence. This validates that

our feature explanation approach can distinguish between variables that carry true

information relevant to the network and variables that are unrelated to the images.
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C.4 Multimodal Explanation Results
Finally, we consider the multi-modal model trained on all three genetic modalities,

ContIG with the “Outer” training scheme. Fig. C.2 shows the aggregated attribution

scores for each of the three modalities, Raw-SNPs, PGS, and Burdens, for ContIG

with the “Outer” training scheme. Fig. C.2 (a) shows that PGS scores on average

have more influence than individual SNPs or burden scores. However, Fig. C.2 (b)

also shows that in aggregate, raw SNPs and burden scores have more total influence

on the model. This is likely due to PGS only having 481 features, while raw SNPs

and Burdens have 7,854 and 18,574 features, respectively. This may also explain

the small but counterintuitive performance drop from ContIG (PGS) to ContIG

(Outer RPB) in certain downstream tasks: the strongest signal – and probably the

most relevant for those tasks –, PGS, gets “drowned out” by the less important but

overabundant signal in the raw SNPs and burden scores.
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Figure C.1: Explanation method validation. Shown is the mean absolute attribution for

each feature aggregated over a batch-size of 1,000 individuals. noise0, ..., noise4
don’t carry any information and also get downweighted by our attribution method. Figure

Source [Tal+22a], reprinted with permission.
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