• search hit 5 of 10
Back to Result List

Heated relations: temperature-mediated shifts in consumption across trophic levels

  • A rise in temperature will intensify the feeding links involving ectotherms in food webs. However, it is unclear how the effects will quantitatively differ between the plant-herbivore and herbivore-carnivore interface. To test how warming could differentially affect rates of herbivory and carnivory, we studied trophic interaction strength in a food chain comprised of green algae, herbivorous rotifers and carnivorous rotifers at 10, 15, 20 and 25 degrees C. We found significant warming-induced changes in feeding by both herbivorous and carnivorous rotifers, but these responses occurred at different parts of the entire temperature gradient. The strongest response of the per capita herbivore's ingestion rate occurred due to an increase in temperature from 15 to 20 degrees C (1.9 fold: from 834 to 1611 algal cells per h(-1)) and of the per capita carnivore's ingestion rate from 20 to 25 degrees C (1.6 fold: from 1.5 to 2.5 prey h(-1)). Handling time, an important component of a consumer's functional response, significantly decreased fromA rise in temperature will intensify the feeding links involving ectotherms in food webs. However, it is unclear how the effects will quantitatively differ between the plant-herbivore and herbivore-carnivore interface. To test how warming could differentially affect rates of herbivory and carnivory, we studied trophic interaction strength in a food chain comprised of green algae, herbivorous rotifers and carnivorous rotifers at 10, 15, 20 and 25 degrees C. We found significant warming-induced changes in feeding by both herbivorous and carnivorous rotifers, but these responses occurred at different parts of the entire temperature gradient. The strongest response of the per capita herbivore's ingestion rate occurred due to an increase in temperature from 15 to 20 degrees C (1.9 fold: from 834 to 1611 algal cells per h(-1)) and of the per capita carnivore's ingestion rate from 20 to 25 degrees C (1.6 fold: from 1.5 to 2.5 prey h(-1)). Handling time, an important component of a consumer's functional response, significantly decreased from 15 to 20 degrees C in herbivorous rotifers. In contrast, it decreased from 20 to 25 degrees C in carnivorous rotifers. Attack rates significantly and strongly increased from 10 to 25 degrees C in the herbivorous animals, but not at all in the carnivores. Our results exemplify how the relative forces of top-down control exerted by herbivores and carnivores may strongly shift under global warming. But warming, and its magnitude, are not the only issue: If our results would prove to be representative, shifts in ectotherm interactions will quantitatively differ when a 5 degrees C increase starts out from a low, intermediate or high initial temperature. This would imply that warming could have different effects on the relative forces of carnivory and herbivory in habitats differing in average temperature, as would exist at different altitudes and latitudes.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Linda I. Seifert, Francisco de Castro, Arnim MarquartORCiDGND, Ursula GaedkeORCiDGND, Guntram WeithoffORCiDGND, Matthijs Vos
DOI:https://doi.org/10.1371/journal.pone.0095046
ISSN:1932-6203
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/24797506
Title of parent work (English):PLoS one
Publisher:PLoS
Place of publishing:San Fransisco
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Volume:9
Issue:5
Number of pages:7
Funding institution:DFG (Deutsche Forschungsgemeinschaft); Beaufort Marine Research Award; Strategy for Science Technology and Innovation - Marine Institute, funded under the Marine Research Sub-Programme of the Irish National Development Plan
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Publishing method:Open Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.