• search hit 19 of 37
Back to Result List

High Photosynthetic Rates under a Colimitation for Inorganic Phosphorus and Carbon Dioxide1

  • Inorganic phosphorus (P-i) and carbon (here, CO2) potentially limit the photosynthesis of phytoplankton simultaneously (colimitation). A single P-i limitation generally reduces photosynthesis, but the effect of a colimitation is not known. Therefore, photosynthesis was measured under P-i-limited conditions and high and low CO2, and osmo-mixotrophic (i.e., growth in the presence of glucose) conditions that result in colimiting conditions in some cases. The green alga Chlamydomonas acidophila Negoro was used as a model organism because low P-i and CO2 concentrations likely influence its photosynthetic rates in its natural environment. Results showed a decreasing maximum photosynthetic rate (P-max) and maximum quantum yield (Theta(II)) with increasing P-i limitation. In addition, a P-i limitation enhanced the relative contribution of dark respiration to P-max (R-d:P-max) but did not influence the compensation light intensity. P-max positively correlated with the cellular RUBISCO content. Osmo-mixotrophic conditions resulted in similarInorganic phosphorus (P-i) and carbon (here, CO2) potentially limit the photosynthesis of phytoplankton simultaneously (colimitation). A single P-i limitation generally reduces photosynthesis, but the effect of a colimitation is not known. Therefore, photosynthesis was measured under P-i-limited conditions and high and low CO2, and osmo-mixotrophic (i.e., growth in the presence of glucose) conditions that result in colimiting conditions in some cases. The green alga Chlamydomonas acidophila Negoro was used as a model organism because low P-i and CO2 concentrations likely influence its photosynthetic rates in its natural environment. Results showed a decreasing maximum photosynthetic rate (P-max) and maximum quantum yield (Theta(II)) with increasing P-i limitation. In addition, a P-i limitation enhanced the relative contribution of dark respiration to P-max (R-d:P-max) but did not influence the compensation light intensity. P-max positively correlated with the cellular RUBISCO content. Osmo-mixotrophic conditions resulted in similar P-max, Theta(II), and RUBISCO content as in high-CO2 cultures. The low-CO2 cultures were colimited by P-i and CO2 and had the highest P-max, Theta(II), and RUBISCO content. Colimiting conditions for P-i and CO2 in C. acidophila resulted in an enhanced mismatch between photosynthesis and growth rates compared to the effect of a single P- i limitation. Primary productivity of colimited phytoplankton could thus be misinterpreted.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Elly SpijkermanORCiD
URL:http://www3.interscience.wiley.com/cgi-bin/issn?DESCRIPTOR=PRINTISSN&VALUE=0022-3646
DOI:https://doi.org/10.1111/j.1529-8817.2010.00859.x
ISSN:0022-3646
Publication type:Article
Language:English
Year of first publication:2010
Publication year:2010
Release date:2017/03/25
Source:Journal of Phycology. - ISSN 0022-3646. - 46 (2010), 4, S. 658 - 664
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.