Refine
Year of publication
Document Type
- Article (32)
- Conference Proceeding (3)
- Postprint (2)
- Doctoral Thesis (1)
Language
- English (38)
Is part of the Bibliography
- yes (38)
Keywords
- Chlamydomonas (6)
- Photosynthesis (3)
- Phytoplankton (3)
- photosynthesis (3)
- phytoplankton (3)
- CCM (2)
- CO2 concentrating mechanism (2)
- Chlamydomonas acidophila (2)
- Chlorophyceae (2)
- Fatty acids (2)
Institute
Inorganic phosphorus (P-i) and carbon (here, CO2) potentially limit the photosynthesis of phytoplankton simultaneously (colimitation). A single P-i limitation generally reduces photosynthesis, but the effect of a colimitation is not known. Therefore, photosynthesis was measured under P-i-limited conditions and high and low CO2, and osmo-mixotrophic (i.e., growth in the presence of glucose) conditions that result in colimiting conditions in some cases. The green alga Chlamydomonas acidophila Negoro was used as a model organism because low P-i and CO2 concentrations likely influence its photosynthetic rates in its natural environment. Results showed a decreasing maximum photosynthetic rate (P-max) and maximum quantum yield (Theta(II)) with increasing P-i limitation. In addition, a P-i limitation enhanced the relative contribution of dark respiration to P-max (R-d:P-max) but did not influence the compensation light intensity. P-max positively correlated with the cellular RUBISCO content. Osmo-mixotrophic conditions resulted in similar P-max, Theta(II), and RUBISCO content as in high-CO2 cultures. The low-CO2 cultures were colimited by P-i and CO2 and had the highest P-max, Theta(II), and RUBISCO content. Colimiting conditions for P-i and CO2 in C. acidophila resulted in an enhanced mismatch between photosynthesis and growth rates compared to the effect of a single P- i limitation. Primary productivity of colimited phytoplankton could thus be misinterpreted.
Chlamydomonas acidophila faces high heavy-metal concentrations in acidic mining lakes, where it is a dominant phytoplankton species. To investigate the importance of metals to C. acidophila in these lakes, we examined the response of growth, photosynthesis, cell structure, heat-shock protein (Hsp) accumulation, and metal adsorption after incubation in metal-rich lake water and artificial growth medium enriched with metals (Fe, Zn). Incubation in both metal-rich lake water and medium caused large decreases in photosystem II function (though no differences among lakes), but no decrease in growth rate (except for medium + Fe). Concentrations of small Hsps were higher in algae incubated in metal-rich lake- water than in metal-enriched medium, whereas Hsp60 and Hsp70A were either less or equally expressed. Cellular Zn and Fe contents were lower, and metals adsorbed to the cell surface were higher, in lake-water-incubated algae than in medium- grown cells. The results indicate that high Zn or Fe levels are likely not the main or only contributor to the low primary production in mining lakes, and multiple adaptations of C. acidophila (e.g., high Hsp levels, decreased metal accumulation) increase its tolerance to metals and permit survival under such adverse environmental conditions. Supposedly, the main stress factor present in the lake water is an interaction between low P and high Fe concentrations.
Chlamydomonas acidophila, a dominant phytoplankton species in the very acidic Lake 111 (pH 2.7) situated in Germany, faces low concentrations of inorganic phosphorus (P-i), inorganic carbon (C-i) and potassium (K+) in its environment, which may lead to a complex colimitation by these nutrients. We performed laboratory and field investigations to test for P-i limitation and its dependence on C-i and K+ concentrations. The minimum cell quota for phosphorus (Q(0)) and phosphatase enzyme activity were similar to those for neutrophilic algae, despite the low pH and high concentrations of iron and aluminium, indicating no extra metabolic costs or inhibition of enzymes by the extreme environment. The threshold concentration of soluble reactive phosphorus for growth (SRPt), the algal C:P ratio and the alkaline phosphatase enzyme activity all suggested a moderate P-i limitation of C. acidophila in Lake 111. SRPt and Q(0) were higher at low CO2 and K+ concentrations in culture, showing a relationship between C-i and P-i acquisition. Furthermore, SRPt and Q(0) were higher under K+/P-i-colimiting conditions than under P-i-limiting conditions alone, suggesting that K+ concentrations influence P-i limitation in C. acidophila as well. Our results show that a limitation by one macronutrient requires consideration of the availability of the others as their uptake mechanisms depend on each other. Notwithstanding these interactions, C-i or K+ concentrations had no clear influence on the P-i limitation of C. acidophila in Lake 111.
Simultaneous limitation of plant growth by two or more nutrients is increasingly acknowledged as a common phenomenon in nature, but its cellular mechanisms are far from understood. We investigated the uptake kinetics of CO(2) and phosphorus of the algae Chlamydomonas acidophila in response to growth at limiting conditions of CO(2) and phosphorus. In addition, we fitted the data to four different Monod-type models: one assuming Liebigs Law of the minimum, one assuming that the affinity for the uptake of one nutrient is not influenced by the supply of the other (independent colimitation) and two where the uptake affinity for one nutrient depends on the supply of the other (dependent colimitation). In addition we asked whether the physiological response under colimitation differs from that under single nutrient limitation. We found no negative correlation between the affinities for uptake of the two nutrients, thereby rejecting a dependent colimitation. Kinetic data were supported by a better model fit assuming independent uptake of colimiting nutrients than when assuming Liebigs Law of the minimum or a dependent colimitation. Results show that cell nutrient homeostasis regulated nutrient acquisition which resulted in a trade-off in the maximum uptake rates of CO(2) and phosphorus, possibly driven by space limitation on the cell membrane for porters for the different nutrients. Hence, the response to colimitation deviated from that to a single nutrient limitation. In conclusion, responses to single nutrient limitation cannot be extrapolated to situations where multiple nutrients are limiting, which calls for colimitation experiments and models to properly predict growth responses to a changing natural environment. These deviations from single nutrient limitation response under colimiting conditions and independent colimitation may also hold for other nutrients in algae and in higher plants.
The underlying mechanisms and consequences of competition and diversity are central themes in ecology. A higher diversity of primary producers often results in higher resource use efficiency in aquatic and terrestrial ecosystems. This may result in more food for consumers on one hand, while, on the other hand, it can also result in a decreased food quality for consumers; higher biomass combined with the same availability of the limiting compound directly reduces the dietary proportion of the limiting compound. Here we tested whether and how interspecific competition in phytoplankton communities leads to changes in resource use efficiency and cellular concentrations of nutrients and fatty acids. The measured particulate carbon : phosphorus ratios (C:P) and fatty acid concentrations in the communities were compared to the theoretically expected ratios and concentrations of measurements on simultaneously running monocultures. With interspecific competition, phytoplankton communities had higher concentrations of the monounsaturated fatty acid oleic acid and also much higher concentrations of the ecologically and physiologically relevant long-chain polyunsaturated fatty acid eicosapentaenoic acid than expected concentrations based on monocultures. Such higher availability of essential fatty acids may contribute to the positive relationship between phytoplankton diversity and zooplankton growth, and may compensate limitations by mineral nutrients in higher trophic levels.
The extremophilic microalga Chlamydomonas acidophila inhabits very acidic waters (pH 2-3.5), where its growth is often limited by phosphorus (P) or colimited by P and inorganic carbon (CO(2)). Because this alga is a major food source for predators in acidic habitats, we studied its fatty acid content, which reflects their quality as food, grown under a combination of P-limited and different carbon conditions (either mixotrophically with light + glucose or at high or low CO(2), both without glucose). The fatty acid composition largely depended on the cellular P content: stringent P-limited cells had a higher total fatty acid concentration and had a lower percentage of polyunsaturated fatty acids. An additional limitation for CO(2) inhibited this decrease, especially reflected in enhanced concentrations of 18:3(9,12,15) and 16:4(3,7,10,13), resulting in cells relatively rich in polyunsaturated fatty acids under colimiting growth conditions. The percentage of polyunsaturated to total fatty acid content was positively related with maximum photosynthesis under all conditions applied. The two factors, P and CO(2), thus interact in their effect on the fatty acid composition in C. acidophila, and colimited cells P-limited algae can be considered a superior food source for herbivores because of the high total fatty acid content and relative richness in polyunsaturated fatty acids.
The CO2 acquisition was analyzed in Chlamydomonas acidophila at pH 2.4 in a range of medium P and Fe concentrations and at high and low CO2 condition. The inorganic carbon concentrating factor (CCF) was related to cellular P quota (Q(p)), maximum CO2-uptake rate by photosynthesis (V-max; O-2), half saturation constant for CO2 uptake (K-0.5), and medium Fe concentration. There was no effect of the medium Fe concentration on the CCF. The CCF increased with increasing Q(p) in both high and low CO2 grown algae, but maximum Q(p) was 6-fold higher in the low CO2 cells. In high CO2 conditions, the CCF was low, ranging between 0.8 and 3.5. High CCF values up to 9.1 were only observed in CO2-limited cells, but P- and CO2-colimited cells had a low CCF. High CCF did not relate with a low K-0.5 as all CO2-limited cells had a low K-0.5 (<4 mu M CO2). High Ci-pools in cells with high Qp suggested the presence of an active CO2-uptake mechanism. The CCF also increased with increasing V-max; O-2 which reflect an adaptation to the nutrient in highest demand (CO2) under balanced growth conditions. It is proposed that the size of the CCF in C. acidophila is more strongly related to porter density for CO2 uptake (reflected in V-max; O-2) and less- to high-affinity CO2 uptake (low K-0.5) at balanced growth. In addition, high CCF can only be realized with high Q(p).