• search hit 7 of 81
Back to Result List

Remote control of soft nano-objects by light using azobenzene containing surfactants

  • We review recent progress in the field of light responsive soft nano-objects. These are systems the shape, size, surface area and surface energy of which can be easily changed by low-intensity external irradiation. Here we shall specifically focus on microgels, DNA molecules, polymer brushes and colloidal particles. One convenient way to render these objects photosensitive is to couple them via ionic and/or hydrophobic interactions with azobenzene containing surfactants in a non-covalent way. The advantage of this strategy is that these surfactants can make any type of charged object light responsive without the need for possibly complicated (and irreversible) chemical conjugation. In the following, we will exclusively discuss only photosensitive surfactant systems. These contain a charged head and a hydrophobic tail into which an azobenzene group is incorporated, which can undergo reversible photo-isomerization from a trans-to a cis-configuration under UV illumination. These kinds of photo-isomerizations occur on a picosecondWe review recent progress in the field of light responsive soft nano-objects. These are systems the shape, size, surface area and surface energy of which can be easily changed by low-intensity external irradiation. Here we shall specifically focus on microgels, DNA molecules, polymer brushes and colloidal particles. One convenient way to render these objects photosensitive is to couple them via ionic and/or hydrophobic interactions with azobenzene containing surfactants in a non-covalent way. The advantage of this strategy is that these surfactants can make any type of charged object light responsive without the need for possibly complicated (and irreversible) chemical conjugation. In the following, we will exclusively discuss only photosensitive surfactant systems. These contain a charged head and a hydrophobic tail into which an azobenzene group is incorporated, which can undergo reversible photo-isomerization from a trans-to a cis-configuration under UV illumination. These kinds of photo-isomerizations occur on a picosecond timescale and are fully reversible. The two isomers in general possess different polarity, i.e. the trans-state is less polar with a dipole moment of usually close to 0 Debye, while the cis-isomer has a dipole moment up to 3 Debye or more, depending on additional phenyl ring substituents. As part of the hydrophobic tail of a surfactant molecule, the photo-isomerization also changes the hydrophobicity of the molecule as a whole and hence its solubility, surface energy, and strength of interaction with other substances. Being a molecular actuator, which converts optical energy in to mechanical work, the azobenzene group in the shape of surfactant molecule can be utilized in order to actuate matter on larger time and length scale. In this paper we show several interesting examples, where azobenzene containing surfactants play the role of a transducer mediating between different states of size, shape, surface energy and spatial arrangement of various nanoscale soft-material systems.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Svetlana SanterORCiDGND
DOI:https://doi.org/10.1088/1361-6463/aa95ca
ISSN:0022-3727
ISSN:1361-6463
Title of parent work (English):Journal of physics ; D, Applied physics
Publisher:IOP Publ.
Place of publishing:Bristol
Publication type:Review
Language:English
Date of first publication:2017/11/22
Publication year:2018
Release date:2022/02/14
Tag:azobenzene; light responsive DNA; light responsive microgels; light responsive polymer brushes; photosensitive soft objects; photosensitive surfactants
Volume:51
Issue:1
Number of pages:17
Funding institution:Research Foundation (DFG) [GU 1510/3-1, SA 1657/13-1]; Helmholtz Graduate School on Macromolecular Bioscience (Teltow, Germany); International Max Planck Research School on Multiscale Bio-Systems (IMPRS, Potsdam)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.