• search hit 1 of 7
Back to Result List

Experimental deformation of opalinus clay at elevated temperature and pressure conditions

  • The mechanical behavior of the sandy facies of Opalinus Clay (OPA) was investigated in 42 triaxial tests performed on dry samples at unconsolidated, undrained conditions at confining pressures (p(c)) of 50-100 MPa, temperatures (T) between 25 and 200 degrees C and strain rates (epsilon) (over dot ) of 1 x-10(-3)-5 x-10(-6) -s(-1). Using a Paterson-type deformation apparatus, samples oriented at 0 degrees, 45 degrees and 90 degrees to bedding were deformed up to about 15% axial strain. Additionally, the influence of water content, drainage condition and pre-consolidation was investigated at fixed p(c)-T conditions, using dry and re-saturated samples. Deformed samples display brittle to semi-brittle deformation behavior, characterized by cataclastic flow in quartz-rich sandy layers and granular flow in phyllosilicate-rich layers. Samples loaded parallel to bedding are less compliant compared to the other loading directions. With the exception of samples deformed 45 degrees and 90 degrees to bedding at p(c) = 100 MPa, strain is localizedThe mechanical behavior of the sandy facies of Opalinus Clay (OPA) was investigated in 42 triaxial tests performed on dry samples at unconsolidated, undrained conditions at confining pressures (p(c)) of 50-100 MPa, temperatures (T) between 25 and 200 degrees C and strain rates (epsilon) (over dot ) of 1 x-10(-3)-5 x-10(-6) -s(-1). Using a Paterson-type deformation apparatus, samples oriented at 0 degrees, 45 degrees and 90 degrees to bedding were deformed up to about 15% axial strain. Additionally, the influence of water content, drainage condition and pre-consolidation was investigated at fixed p(c)-T conditions, using dry and re-saturated samples. Deformed samples display brittle to semi-brittle deformation behavior, characterized by cataclastic flow in quartz-rich sandy layers and granular flow in phyllosilicate-rich layers. Samples loaded parallel to bedding are less compliant compared to the other loading directions. With the exception of samples deformed 45 degrees and 90 degrees to bedding at p(c) = 100 MPa, strain is localized in discrete shear zones. Compressive strength (sigma(max)) increases with increasing pc, resulting in an internal friction coefficient of approximate to 0.31 for samples deformed at 45 degrees and 90 degrees to bedding, and approximate to 0.44 for samples deformed parallel to bedding. In contrast, pre-consolidation, drainage condition, T and epsilon(over dot )do not significantly affect deformation behavior of dried samples. However, sigma(max) and Young's modulus (E) decrease substantially with increasing water saturation. Compared to the clay-rich shaly facies of OPA, sandy facies specimens display higher strength sigma(max) and Young's modulus E at similar deformation conditions. Strength and Young's modulus of samples deformed 90 degrees and 45 degrees to bedding are close to the iso-stress Reuss bound, suggesting a strong influence of weak clay-rich layers on the deformation behavior.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Valerian SchusterORCiDGND, Erik RybackiORCiDGND, Audrey BonnelyeORCiDGND, Johannes HerrmannORCiDGND, Anja Maria SchleicherORCiDGND, Georg DresenORCiDGND
DOI:https://doi.org/10.1007/s00603-021-02474-3
ISSN:0723-2632
ISSN:1434-453X
Title of parent work (English):Rock mechanics and rock engineering
Subtitle (English):Mechanical properties and the influence of rock fabric
Publisher:Springer
Place of publishing:Wien
Publication type:Article
Language:English
Date of first publication:2021/05/11
Publication year:2021
Release date:2024/01/08
Tag:Anisotropy; Clay rock; Microstructural deformation mechanisms; Pressure-temperature and strain rate-dependent mechanical behaviour; Sandy facies of Opalinus Clay; Triaxial deformation experiments
Volume:54
Number of pages:31
First page:4009
Last Page:4039
Funding institution:Projekt DEAL
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Hybrid Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.