• search hit 1 of 1
Back to Result List

Investigating loss of relativistic electrons associated with EMIC Waves at low L values on 22 June 2015

  • In this study, rapid loss of relativistic radiation belt electrons at low L* values (2.4-3.2) during a strong geomagnetic storm on 22 June 2015 is investigated along with five possible loss mechanisms. Both the particle and wave data are obtained from the Van Allen Probes. Duskside H+ band electromagnetic ion cyclotron (EMIC) waves were observed during a rapid decrease of relativistic electrons with energy above 5.2 MeV occurring outside the plasma sphere during extreme magnetopause compression. Lower He+ composition and enriched O+ composition are found compared to typical values assumed in other studies of cyclotron resonant scattering of relativistic electrons by EMIC waves. Quantitative analysis demonstrates that even with the existence of He+ band EMIC waves, it is the H+ band EMIC waves that are likely to cause the depletion at small pitch angles and strong gradients in pitch angle distributions of relativistic electrons with energy above 5.2 MeV at low L values for this event. Very low frequency wave activity at other magneticIn this study, rapid loss of relativistic radiation belt electrons at low L* values (2.4-3.2) during a strong geomagnetic storm on 22 June 2015 is investigated along with five possible loss mechanisms. Both the particle and wave data are obtained from the Van Allen Probes. Duskside H+ band electromagnetic ion cyclotron (EMIC) waves were observed during a rapid decrease of relativistic electrons with energy above 5.2 MeV occurring outside the plasma sphere during extreme magnetopause compression. Lower He+ composition and enriched O+ composition are found compared to typical values assumed in other studies of cyclotron resonant scattering of relativistic electrons by EMIC waves. Quantitative analysis demonstrates that even with the existence of He+ band EMIC waves, it is the H+ band EMIC waves that are likely to cause the depletion at small pitch angles and strong gradients in pitch angle distributions of relativistic electrons with energy above 5.2 MeV at low L values for this event. Very low frequency wave activity at other magnetic local time can be favorable for the loss of relativistic electrons at higher pitch angles. An illustrative calculation that combines the nominal pitch angle scattering rate due to whistler mode chorus at high pitch angles with the H+ band EMIC wave loss rate at low pitch angles produces loss on time scale observed at L = 2.4-3.2. At high L values and lower energies, radial loss to the magnetopause is a viable explanation.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Murong QinORCiD, Mary Hudson, Zhao LiORCiD, Robyn MillanORCiD, Xiaochen ShenORCiD, Yuri Y. ShpritsORCiD, Leslie WoodgerORCiD, Allison JaynesORCiD, Craig KletzingORCiD
DOI:https://doi.org/10.1029/2018JA025726
ISSN:2169-9380
ISSN:2169-9402
Title of parent work (English):Journal of geophysical research : Space physics
Publisher:American Geophysical Union
Place of publishing:Washington
Publication type:Article
Language:English
Date of first publication:2019/05/06
Publication year:2019
Release date:2021/01/27
Volume:124
Issue:6
Number of pages:15
First page:4022
Last Page:4036
Funding institution:NASANational Aeronautics & Space Administration (NASA) [NNX15AF54G]; JHU/APL under NASA [NNN16AA09T, NNN06AA01C]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.