The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 41 of 89
Back to Result List

Multiband (X, C, L) radar amplitude analysis for a mixed sand- and gravel-bed river in the eastern Central Andes

  • Synthetic Aperture Radar (SAR) amplitude measurements from spaceborne sensors are sensitive to surface roughness conditions near their radar wavelength. These backscatter signals are often exploited to assess the roughness of plowed agricultural fields and water surfaces, and less so to complex, heterogeneous geological surfaces. The bedload of mixed sand- and gravel-bed rivers can be considered a mixture of smooth (compacted sand) and rough (gravel) surfaces. Here, we assess backscatter gradients over a large high-mountain alluvial river in the eastern Central Andes with aerially exposed sand and gravel bedload using X-band TerraSAR-X/TanDEM-X, C-band Sentinel-1, and L-band ALOS-2 PALSAR-2 radar scenes. In a first step, we present theory and hypotheses regarding radar response to an alluvial channel bed. We test our hypotheses by comparing backscatter responses over vegetation-free endmember surfaces from inside and outside of the active channel-bed area. We then develop methods to extract smoothed backscatter gradients downstreamSynthetic Aperture Radar (SAR) amplitude measurements from spaceborne sensors are sensitive to surface roughness conditions near their radar wavelength. These backscatter signals are often exploited to assess the roughness of plowed agricultural fields and water surfaces, and less so to complex, heterogeneous geological surfaces. The bedload of mixed sand- and gravel-bed rivers can be considered a mixture of smooth (compacted sand) and rough (gravel) surfaces. Here, we assess backscatter gradients over a large high-mountain alluvial river in the eastern Central Andes with aerially exposed sand and gravel bedload using X-band TerraSAR-X/TanDEM-X, C-band Sentinel-1, and L-band ALOS-2 PALSAR-2 radar scenes. In a first step, we present theory and hypotheses regarding radar response to an alluvial channel bed. We test our hypotheses by comparing backscatter responses over vegetation-free endmember surfaces from inside and outside of the active channel-bed area. We then develop methods to extract smoothed backscatter gradients downstream along the channel using kernel density estimates. In a final step, the local variability of sand-dominated patches is analyzed using Fourier frequency analysis, by fitting stretched-exponential and power-law regression models to the 2-D power spectrum of backscatter amplitude. We find a large range in backscatter depending on the heterogeneity of contiguous smooth- and rough-patches of bedload material. The SAR amplitude signal responds primarily to the fraction of smooth-sand bedload, but is further modified by gravel elements. The sensitivity to gravel is more apparent in longer wavelength L-band radar, whereas C- and X-band is sensitive only to sand variability. Because the spatial extent of smooth sand patches in our study area is typically< 50 m, only higher resolution sensors (e.g., TerraSAR-X/TanDEM-X) are useful for power spectrum analysis. Our results show the potential for mapping sand-gravel transitions and local geomorphic complexity in alluvial rivers with aerially exposed bedload using SAR amplitude.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Benjamin PurintonORCiDGND, Bodo BookhagenORCiDGND
DOI:https://doi.org/10.1016/j.rse.2020.111799
ISSN:0034-4257
ISSN:1879-0704
Title of parent work (English):Remote sensing of environment : an interdisciplinary journal
Publisher:Elsevier
Place of publishing:New York
Publication type:Article
Language:English
Date of first publication:2020/05/07
Publication year:2020
Release date:2023/01/09
Tag:ALOS-2 PALSAR-2; Fluvial; Radar backscatter; SAR amplitude; Sentinel-1; Surface roughness; TerraSAR-X/TanDEM-X; geomorphology
Volume:246
Article number:111799
Number of pages:16
Funding institution:DFG funded IRTG-StRATEGy [IGK2018]; NEXUS through the MWFK Brandenburg,; Germany
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
DDC classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.