The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 46 of 94
Back to Result List

Standardizing clinical predictive modeling

Standardisierung der klinischen Vorhersagemodellierung

  • An ever-increasing number of prediction models is published every year in different medical specialties. Prognostic or diagnostic in nature, these models support medical decision making by utilizing one or more items of patient data to predict outcomes of interest, such as mortality or disease progression. While different computer tools exist that support clinical predictive modeling, I observed that the state of the art is lacking in the extent to which the needs of research clinicians are addressed. When it comes to model development, current support tools either 1) target specialist data engineers, requiring advanced coding skills, or 2) cater to a general-purpose audience, therefore not addressing the specific needs of clinical researchers. Furthermore, barriers to data access across institutional silos, cumbersome model reproducibility and extended experiment-to-result times significantly hampers validation of existing models. Similarly, without access to interpretable explanations, which allow a given model to be fullyAn ever-increasing number of prediction models is published every year in different medical specialties. Prognostic or diagnostic in nature, these models support medical decision making by utilizing one or more items of patient data to predict outcomes of interest, such as mortality or disease progression. While different computer tools exist that support clinical predictive modeling, I observed that the state of the art is lacking in the extent to which the needs of research clinicians are addressed. When it comes to model development, current support tools either 1) target specialist data engineers, requiring advanced coding skills, or 2) cater to a general-purpose audience, therefore not addressing the specific needs of clinical researchers. Furthermore, barriers to data access across institutional silos, cumbersome model reproducibility and extended experiment-to-result times significantly hampers validation of existing models. Similarly, without access to interpretable explanations, which allow a given model to be fully scrutinized, acceptance of machine learning approaches will remain limited. Adequate tool support, i.e., a software artifact more targeted at the needs of clinical modeling, can help mitigate the challenges identified with respect to model development, validation and interpretation. To this end, I conducted interviews with modeling practitioners in health care to better understand the modeling process itself and ascertain in what aspects adequate tool support could advance the state of the art. The functional and non-functional requirements identified served as the foundation for a software artifact that can be used for modeling outcome and risk prediction in health research. To establish the appropriateness of this approach, I implemented a use case study in the Nephrology domain for acute kidney injury, which was validated in two different hospitals. Furthermore, I conducted user evaluation to ascertain whether such an approach provides benefits compared to the state of the art and the extent to which clinical practitioners could benefit from it. Finally, when updating models for external validation, practitioners need to apply feature selection approaches to pinpoint the most relevant features, since electronic health records tend to contain several candidate predictors. Building upon interpretability methods, I developed an explanation-driven recursive feature elimination approach. This method was comprehensively evaluated against state-of-the art feature selection methods. Therefore, this thesis' main contributions are three-fold, namely, 1) designing and developing a software artifact tailored to the specific needs of the clinical modeling domain, 2) demonstrating its application in a concrete case in the Nephrology context and 3) development and evaluation of a new feature selection approach applicable in a validation context that builds upon interpretability methods. In conclusion, I argue that appropriate tooling, which relies on standardization and parametrization, can support rapid model prototyping and collaboration between clinicians and data scientists in clinical predictive modeling.show moreshow less
  • Die Zahl der jährlich veröffentlichten Vorhersagemodelle in verschiedenen medizinischen Fachrichtungen nimmt stetig zu. Solche prognostischen oder diagnostischen Modelle helfen bei der medizinischen Entscheidungsfindung, indem sie zum Beispiel Vorhersagen zur Mortalität oder zum Krankheitsverlauf erlauben. Obwohl bereits Softwarewerkzeuge für die Entwicklung klinischer Vorhersagemodelle existieren, genügt der Stand der Technik noch immer nicht den Anforderungen klinischer Wissenschaftler. So kommt es, dass aktuelle Softwarewerkzeuge zur Modellentwicklung entweder 1) auf die Anforderungen von Datenwissenschaftlicher zugeschnitten sind und folglich Programmierkenntnisse voraussetzen, oder 2) zu generisch sind und somit den tatsächlichen Anforderungen klinischer Wissenschaftler nicht gerecht werden. Überdies wird die Reproduzierbarkeit der Modelle sowie die Durchführung und Validierung von Experimenten durch verteilte Datenbestände und Informationen, sogenannte Datensilos, stark eingeschränkt. Ähnlich verhält es sich bei der AkzeptanzDie Zahl der jährlich veröffentlichten Vorhersagemodelle in verschiedenen medizinischen Fachrichtungen nimmt stetig zu. Solche prognostischen oder diagnostischen Modelle helfen bei der medizinischen Entscheidungsfindung, indem sie zum Beispiel Vorhersagen zur Mortalität oder zum Krankheitsverlauf erlauben. Obwohl bereits Softwarewerkzeuge für die Entwicklung klinischer Vorhersagemodelle existieren, genügt der Stand der Technik noch immer nicht den Anforderungen klinischer Wissenschaftler. So kommt es, dass aktuelle Softwarewerkzeuge zur Modellentwicklung entweder 1) auf die Anforderungen von Datenwissenschaftlicher zugeschnitten sind und folglich Programmierkenntnisse voraussetzen, oder 2) zu generisch sind und somit den tatsächlichen Anforderungen klinischer Wissenschaftler nicht gerecht werden. Überdies wird die Reproduzierbarkeit der Modelle sowie die Durchführung und Validierung von Experimenten durch verteilte Datenbestände und Informationen, sogenannte Datensilos, stark eingeschränkt. Ähnlich verhält es sich bei der Akzeptanz von Modellen des maschinellen Lernens, welche ohne interpretierbare Erklärungen von Vorhersagen kaum gegeben sein dürfte. Eine auf diese Anforderungen klinischer Modellbildung ausgerichtete Softwarelösung kann dabei helfen, die identifizierten Herausforderungen bezüglich Modellentwicklung, -validierung und -interpretation zu bewältigen und die Akzeptanz und Nutzung unter Klinikern zu stärken. Um den Modellierungsprozess zu verstehen und zu eruieren, in welchem Ausmaß eine angemessene Softwarelösung den Stand der Technik voranbringen könnte, wurden im Zuge dieser Arbeit Interviews mit praktizierenden Modellierern im Gesundheitsbereich geführt. Daraus leiten sich funktionale und nichtfunktionale Anforderungen ab, die als Grundlage eines Softwareartefaktes für die Modellierung von Outcome- und Risikovorhersagen in der Gesundheitsforschung verwendet wurden. Um die Eignung meines Ansatzes zu verifizieren, habe ich den Anwendungsfall „akutes Nierenversagen“ im Bereich der Nephrologie in zwei verschiedenen Krankenhäusern betrachtet und validiert. Darüber hinaus wurde eine Nutzerevaluierung durchgeführt um herauszufinden, ob ein solcher Ansatz im Vergleich zum Stand der Technik Vorteile bietet und inwieweit klinische Praktiker davon profitieren können. Außerdem müssen praktizierende Kliniker bei der Aktualisierung von Modellen für die externe Validierung Ansätze zur Merkmalsselektion anwenden, da elektronische Gesundheitsakten in der Regel mehrere erklärende Merkmale enthalten. Aufbauend auf Methoden zur Interpretierbarkeit habe ich einen erklärungsorientierten rekursiven Eliminierungsansatz entwickelt. Dieser neue Ansatz wurde umfassend mit Standardverfahren der Merkmalsselektion verglichen. Daraus leiten sich folgende Forschungsbeiträge dieser Arbeit ab: 1) Entwurf und Entwicklung eines Softwareartefakts, welches auf die speziellen Bedürfnisse der klinischen Modellierungsdomäne zugeschnitten ist, 2) Demonstration seiner Anwendbarkeit für das konkrete Fallbeispiel „akutes Nierenversagen“ und 3) Entwicklung und Evaluierung eines neuen, auf Interpretierbarkeitsmethoden basierenden Ansatzes, zur Merkmalsselektion in einem Validierungskontext. Zusammenfassend ist zu folgern, dass ein geeignetes auf Standardisierung und Parametrisierung gestütztes Tool die schnelle prototypische Entwicklung und die Zusammenarbeit von Klinikern und Datenwissenschaftlern an klinischen Vorhersagemodellen unterstützen kann.show moreshow less

Download full text files

  • SHA-512:2b623000704db560450fbf896e70511be8333bf0602c78118133938a748bb8c5cf2cf64c6b038d98c17886f67bb7012378dc336fb65928a1b86eb2cd305dac45

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Harry Freitas da CruzORCiD
URN:urn:nbn:de:kobv:517-opus4-514960
DOI:https://doi.org/10.25932/publishup-51496
Subtitle (English):standardizing development, validation, and interpretation of clinical prediction models
Subtitle (German):Standardisierung der Entwicklung, Validierung und Interpretierung von klinischen Vorhersagemodellen
Reviewer(s):Christoph MeinelORCiDGND, Alfred Winter, Felix BalzerORCiD
Supervisor(s):Christoph Meinel, Frank Fabian Bier
Publication type:Doctoral Thesis
Language:English
Date of first publication:2021/08/10
Publication year:2021
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2021/04/23
Release date:2021/08/10
Tag:Artificial Intelligence; Klinische Daten; Künstliche Intelligenz; Prädiktive Modellierung; Supervised Learning; Vorhersagemodellierung; Überwachtes Lernen
Clinical Data; Predictive Modeling
Number of pages:xiii, 133
RVK - Regensburg classification:ST 640
Organizational units:Digital Engineering Fakultät / Hasso-Plattner-Institut für Digital Engineering GmbH
CCS classification:H. Information Systems
DDC classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 000 Informatik, Informationswissenschaft, allgemeine Werke
MSC classification:68-XX COMPUTER SCIENCE (For papers involving machine computations and programs in a specific mathematical area, see Section {04 in that areag 68-00 General reference works (handbooks, dictionaries, bibliographies, etc.)
JEL classification:I Health, Education, and Welfare
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.